\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution

Partially funded by the projects MTM2015-63723-P (MINECO/FEDER, EU) and P12-FQM-1492 (Junta de Andalucía).
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, the existence of solution for a $p$ -Laplacian parabolic equation with nonlocal diffusion is established. To do this, we make use of a change of variable which transforms the original problem into a nonlocal one but with local diffusion. Since the uniqueness of solution is unknown, the asymptotic behaviour of the solutions is analysed in a multi-valued framework. Namely, the existence of the compact global attractor in $L^2(Ω)$ is ensured.

    Mathematics Subject Classification: Primary:35B41, 35K55, 35Q92, 37L30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Andami Ovono, Asymptotic behaviour for a diffusion equation governed by nonlocal interactions, Electron. J. Differential Equations, 134 (2010), 1-16. 
    [2] A. Andami Ovono and A. Rougirel, Elliptic equations with diffusion parameterized by the range of nonlocal interactions, Ann. Mat. Pura Appl., 189 (2010), 163-183.  doi: 10.1007/s10231-009-0104-y.
    [3] T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Long-time behaviour of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18.  doi: 10.1016/j.na.2014.07.011.
    [4] T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dyn., 84 (2016), 35-50.  doi: 10.1007/s11071-015-2200-4.
    [5] T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Time-dependent attractors for non-autonomous nonlocal reaction-diffusion equations, Proc. Roy. Soc. Edinburgh Sect. A To appear.
    [6] Y. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.
    [7] M. Chipot and F. J. S. A. Corrêa, Boundary layer solutions to functional elliptic equations, Bull. Braz. Math. Soc. (N.S.), 40 (2009), 381-393.  doi: 10.1007/s00574-009-0017-9.
    [8] M. Chipot and B. Lovat, On the asymptotic behaviour of some nonlocal problems, Positivity, 3 (1999), 65-81.  doi: 10.1023/A:1009706118910.
    [9] M. Chipot and L. Molinet, Asymptotic behaviour of some nonlocal diffusion problems, Appl. Anal., 80 (2001), 279-315.  doi: 10.1080/00036810108840994.
    [10] M. Chipot and J. F. Rodrigues, On a class of nonlocal nonlinear elliptic problems, RAIRO Modél. Math. Anal. Numér., 26 (1992), 447-467.  doi: 10.1051/m2an/1992260304471.
    [11] M. Chipot and P. Roy, Existence results for some functional elliptic equations, Differential Integral Equations, 27 (2014), 289-300. 
    [12] M. Chipot and T. Savistka, Nonlocal p-Laplace equations depending on the $L^p$ norm of the gradient, Adv. Differential Equations, 19 (2014), 997-1020. 
    [13] M. Chipot and M. Siegwart, On the asymptotic behaviour of some nonlocal mixed boundary value problems, in Nonlinear Analysis and applications: To V. Lakshmikantam on his 80th birthday, pp. 431-449, Kluwer Acad. Publ. , Dordrecht, 2003.
    [14] M. ChipotV. Valente and G. V. Caffarelli, Remarks on a nonlocal problem involving the Dirichlet energy, Rend. Sem. Mat. Univ. Padova, 110 (2003), 199-220. 
    [15] M. Chipot and S. Zheng, Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms, Asymptot. Anal., 45 (2005), 301-312. 
    [16] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, Inc. , New York-Toronto-London, 1955.
    [17] F. J. S. A. Corrêa, On positive solutions of nonlocal and nonvariational elliptic problems, Nonlinear Anal., 59 (2004), 1147-1155.  doi: 10.1016/S0362-546X(04)00322-0.
    [18] F. J. S. A. CorrêaS. B. de Menezes and J. Ferreira, On a class of problems involving a nonlocal operator, Appl. Math. Comput., 147 (2004), 475-489.  doi: 10.1016/S0096-3003(02)00740-3.
    [19] R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques Masson, Paris, 1987.
    [20] J. Furter and M. Grinfeld, Local vs. nonlocal interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.  doi: 10.1007/BF00276081.
    [21] J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252 (2012), 4333-4356.  doi: 10.1016/j.jde.2012.01.010.
    [22] D. Hilhorst and J. F. Rodrigues, On a nonlocal diffusion equation with discontinuous reaction, Adv. Differential Equations, 5 (2000), 657-680. 
    [23] A. V. KapustyanV. S. Melnik and J. Valero, Attractors of multivalued dynamical processes generated by phase-field equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1969-1983.  doi: 10.1142/S0218127403007801.
    [24] A. V. Kapustyan and J. Valero, On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems, J. Math. Anal. Appl., 323 (2006), 614-633.  doi: 10.1016/j.jmaa.2005.10.042.
    [25] A. V. Kapustyan and J. Valero, Weak and strong attractors fo the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278.  doi: 10.1016/j.jde.2007.06.008.
    [26] J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Lineaires, Dunod, Paris, 1969.
    [27] B. Lovat, Études de Quelques Problémes Paraboliques Non Locaux Thése, Université de Metz, 1995.
    [28] P. Marín-RubioG. Planas and J. Real, Asymptotic behaviour of a phase-field model with three coupled equations without uniqueness, J. Differential Equations, 246 (2009), 4632-4652.  doi: 10.1016/j.jde.2009.01.021.
    [29] P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989-1006.  doi: 10.3934/dcds.2010.26.989.
    [30] V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.  doi: 10.1023/A:1008608431399.
    [31] S. B. de Menezes, Remarks on weak solutions for a nonlocal parabolic problem, Int. J. Math. Math. Sci., 2006 (2006), 1-10.  doi: 10.1155/IJMMS/2006/82654.
    [32] J. C. RobinsonInfinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001. 
    [33] M. RůžičkaElectrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000. 
    [34] T. Savitska, Asymptotic Behaviour of Solutions of Nonlocal Parabolic Problems Ph. D Thesis, University of Zurich, 2015.
    [35] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd. ed. , Springer, New-York, 1997.
  • 加载中
SHARE

Article Metrics

HTML views(2863) PDF downloads(105) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return