Our aim in this work is the study of the existence and uniqueness of solutions for a non-classical and non-autonomous diffusion equation containing infinite delay terms. We also analyze the asymptotic behaviour of the system in the pullback sense and, under suitable additional conditions, we obtain global exponential decay of the solutions of the evolutionary problem to stationary solutions.
Citation: |
[1] | E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296. doi: 10.1007/BF01202949. |
[2] | C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Analysis, 73 (2010), 399-412. doi: 10.1016/j.na.2010.03.031. |
[3] | F. Balibrea, T. Caraballo, P. E. Kloeden and J. Valero, Recent developments in dynamical systems: Three perspectives, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2591-2636. doi: 10.1142/S0218127410027246. |
[4] | R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1665. doi: 10.1103/PhysRevLett.71.1661. |
[5] | T. Caraballo, M. J. Garrido-Atienza, B Schmalfußand and J. Valero, non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443. doi: 10.3934/dcds.2008.21.415. |
[6] | T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal, 72 (2010), 1967-1976. doi: 10.1016/j.na.2009.09.037. |
[7] | T. Caraballo and A. M. Márquez-Durán, Existence, uniqueness and asymptotic behavior of solutions for a nonclassical difusion equation with delay, Dynamics of Partial Differential Equations, 10 (2013), 267-281. doi: 10.4310/DPDE.2013.v10.n3.a3. |
[8] | T. Caraballo, A. M. Márquez-Durán and F. Rivero, ell-posedness and asymptotic behaviour for a non-classical and non-autonomous diffusion equation with delay, nternational J. Bifurcation and Chaos, 25 (2015), 1540021, 11pp. doi: 10.1142/S0218127415400210. |
[9] | T. Caraballo, A. M. Márquez-Durán and F. Rivero, A Nonclassical and Nonautonomous Diffusion Equation Containing Infinite Delays, Differential and Difference Equations with Applications. ICDDEA 2015. Springer Proceedings in Mathematics & Statistics, vol. 164 (2016) 385-399. |
[10] | T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors of non-autonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11 (2003), 153-201. doi: 10.1023/A:1022902802385. |
[11] | J. K. Hale, Asymptotic Behavior of Dissipative System American Mathematical Society, 1988. |
[12] | J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41. |
[13] | Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay Lecture Notes in Mathematics, 1473, Berlin: Springer-Verlag, 1991. |
[14] | Z. Hu and Y. Wang, Pullback attractors for a non-autonomous nonclassical diffusion equation with variable delay, J. Math. Phys., 53 (2012), 072702, 17pp. doi: 10.1063/1.4736847. |
[15] | K. Kuttlerand and E. C. Aifantis, Existence and uniqueness in non classical diffusion, Quarterly of Applied Mathematics, 45 (1987), 549-560. doi: 10.1090/qam/910461. |
[16] | K. Kuttlerand and E. C. Aifantis, Quasilinear evolution equations in nonclassical diffusion, SIAM Journal on Mathematical Analysis, 19 (1988), 110-120. doi: 10.1137/0519008. |
[17] | J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[18] | Q. Ma, Y. Liu and F. Zhang, Global attractors in $H^1(\mathbb R^N)$ for nonclassical diffusion equations, Discrete Dyn. Nat. Soc. 2012, Art. ID 672762, 16 pp. |
[19] | P. Marín-Rubio, J. Real and J. Valero, Pullback attractors for a 2D-Navier-Stokes model in an infinite delay case, submitted. |
[20] | V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399. |
[21] | J. C. Peter and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627. |
[22] | F. Rivero, Pullback attractor for non-autonomous non-classical parabolic equation, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 209-221. doi: 10.3934/dcdsb.2013.18.209. |
[23] | C. Sun, S. Wang and C. Zhong, Global attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin. Engl., 23 (2007), 1271-1280. doi: 10.1007/s10114-005-0909-6. |
[24] | C. Sun and M. Yang, Dynamics of the nonclassical diffusion equations, Asymptotic Analysis, 59 (2008), 51-81. |
[25] | S. Wang, D. Li and Ch. Zhong, On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 317 (2006), 565-582. doi: 10.1016/j.jmaa.2005.06.094. |