• Previous Article
    Smooth attractors for weak solutions of the SQG equation with critical dissipation
  • DCDS-B Home
  • This Issue
  • Next Article
    Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic
July  2017, 22(5): 1835-1855. doi: 10.3934/dcdsb.2017109

Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$

1. 

Institute for Information Transmission Problems, Moscow 127994, Russia

2. 

National Research University Higher School of Economics, Moscow 101000, Russia

3. 

Keldysh Institute of Applied Mathematics, Moscow 125047, Russia

4. 

University of Surrey, Department of Mathematics, Guildford, GU2 7XH, UK

* Corresponding author: V. Chepyzhov

Received  January 2016 Revised  March 2016 Published  March 2017

We consider the damped and driven two-dimensional Euler equations in the plane with weak solutions having finite energy and enstrophy. We show that these (possibly non-unique) solutions satisfy the energy and enstrophy equality. It is shown that this system has a strong global and a strong trajectory attractor in the Sobolev space $H^1$. A similar result on the strong attraction holds in the spaces $H^1\cap\{u:\ \|\text{curl}\, u\|_{L^p}<∞\}$ for $p≥2$.

Citation: Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109
References:
[1]

A. V. Babin and M. I. Vishik, Maximal attractors of semigroups corresponding to evolution differential equations, Math. Sb. , 126 (1985), 397-419; English transl. Math USSR Sb. , 54 (1986). Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations North-Holland, Amsterdam, 1992. Google Scholar

[3]

J. Ball, Global attractors for damped semilinear wave equations. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 54 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

V. BarcilonP. Constantin and E. S. Titi, Existence of solutions to the Stommel-Charney model of the Gulf Stream, SIAM J. Math. Anal., 19 (1988), 1355-1364.  doi: 10.1137/0519099.  Google Scholar

[5]

H. Bessaih and F. Flandoli, Weak attractor for a dissipative Euler equation, J. Dynam. Diff. Eq., 12 (2000), 713-732.  doi: 10.1023/A:1009042520953.  Google Scholar

[6]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models Applied Mathematical Sciences, 183. Springer, New York, 2013. Google Scholar

[7]

S. Brull and L. Pareschi, Dissipative hydrodynamic models for the diffusion of impurities in a gas, Appl. Math. Lett., 19 (2006), 516-521.  doi: 10.1016/j.aml.2005.07.008.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for dissipative 2D Euler and Navier-Stokes equations, Russian J. Math. Phys., 15 (2008), 156-170.  doi: 10.1134/S1061920808020039.  Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics Amer. Math. Soc. , Providence, 2002. Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964.  doi: 10.1016/S0021-7824(97)89978-3.  Google Scholar

[11]

V. V. ChepyzhovM. I. Vishik and S. Zelik, A strong trajectory attractor for a dissipative reaction-diffusion system, J. Math. Pures Appl., 96 (2011), 395-407.  doi: 10.1016/j.matpur.2011.04.007.  Google Scholar

[12]

V. V. Chepyzhov and S. Zelik, Infinite energy solutions for dissipative Euler equations in $\mathbb{R}^{2}$, J. Math. Fluid Mech., 17 (2015), 513-532.  doi: 10.1007/s00021-015-0213-x.  Google Scholar

[13]

V. V. Chepyzhov, Trajectory attractors for non-autonomous dissipative 2d Euler equations, Discrete Contin. Dyn. Syst. Series B, 20 (2015), 811-832.  doi: 10.3934/dcdsb.2015.20.811.  Google Scholar

[14]
[15]

R. DiPerna and P. Lions, Ordinary differential equations, Sobolev spaces and transport theory, Invent. Math., 98 (1989), 511-547.  doi: 10.1007/BF01393835.  Google Scholar

[16]

J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Diff. Eq., 110 (1994), 356-359.  doi: 10.1006/jdeq.1994.1071.  Google Scholar

[17]

A. A. Ilyin, The Euler equations with dissipation, Sb. Math. , 182 (1991), 1729-1739; English transl. in Math. USSR-Sb. , 74 (1993), 475{485. Google Scholar

[18]

A. A. IlyinA. Miranville and E. S. Titi, Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations, Commun. Math. Sci., 2 (2004), 403-426.  doi: 10.4310/CMS.2004.v2.n3.a4.  Google Scholar

[19]

A. A. IlyinK. Patni and S. V. Zelik, Upper bounds for the attractor dimension of damped Navier--Stokes equations in $\mathbb R^2$, Discrete Contin. Dyn. Syst., 36 (2016), 2085-2102.  doi: 10.3934/dcds.2016.36.2085.  Google Scholar

[20]

A. A. Ilyin and E. S. Titi, Sharp estimates for the number of degrees of freedom of the damped-driven 2-D Navier-Stokes equations, J. Nonlin. Sci., 16 (2006), 233-253.  doi: 10.1007/s00332-005-0720-7.  Google Scholar

[21]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions, Int. J. Bifurc. Chaos, 20 (2010), 2723-2734.  doi: 10.1142/S0218127410027313.  Google Scholar

[22]

P. O. Kasyanov, Multivalued dynamics of of solutions of autonomous operator differential equations with pseudomonotone nonlinearity, Mat. Zametki, 92 (2012), 225-240; English transl.  doi: 10.1134/S0001434612070231.  Google Scholar

[23]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow Gordon and Breach, New York, 1969. Google Scholar

[24]

J. -L. Lions, Quelques Méthodes de Résolutions des Problémes aux Limites non Linéaires Dunod et Gauthier-Villars, Paris, 1969. Google Scholar

[25]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and generalized differential equations, Set-Valued Anal., 6 (1998), 83-111.  doi: 10.1023/A:1008608431399.  Google Scholar

[26]

I. MoiseR. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity, 11 (1998), 1369-1393.  doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[27]

J. Pedlosky, Geophysical Fluid Dynamics Springer, New York, 1979. Google Scholar

[28]

F. Riesz and B. Sz. -Nagy, Functional Analysis Reprint of the 1955 original, Dover Books on Advanced Mathematics. Dover Publications, Inc. , New York, 1990. Google Scholar

[29]

A. Robertson and W. Robertson, Topological Vector Spaces Reprint of the second edition, Cambridge Tracts in Mathematics, 53, Cambridge University Press, Cambridge-New York, 1980. Google Scholar

[30]

R. Rosa, The global attractor for the 2D Navier--Stokes flow on some unbounded domains, Nonlinear Anal., 32 (1998), 71-85.  doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[31]

J.-C. Saut, Remarks on the damped stationary Euler equations, Diff. Int. Eq., 3 (1990), 801-812.   Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer, New York, 1997. Google Scholar

[33]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam-New York-Oxford, 1977. Google Scholar

[34]

M. I. Vishik and V. V. Chepyzhov, Trajectory attractors of equations of mathematical physics, Uspekhi Mat. Nauk, 66 (2011), 3-102; English tarnsl.  doi: 10.1070/RM2011v066n04ABEH004753.  Google Scholar

[35]

G. Wolansky, Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation, Comm. Pure Appl. Math., 41 (1988), 19-46.  doi: 10.1002/cpa.3160410104.  Google Scholar

[36]

V. I. Yudovich, Some bounds for solutions of elliptic equations, Mat. Sb. , (N. S. ) 59 (1962), 229-244. English transl. in Amer. Math. Soc. Transl. , (2) 56 (1966). Google Scholar

[37]

V. I. Yudovich, Non-Stationary flow of an ideal incompressible fluid, Zh. Vychisl. Mat. Mat. Fiz., 3 (1963), 1032-1066.   Google Scholar

[38]

V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2 (1995), 27-38.  doi: 10.4310/MRL.1995.v2.n1.a4.  Google Scholar

[39]

V. I. Yudovich, The Linearization Method in Hydrodynamical Stability Theory Translations of Mathematical Monographs, 74. American Mathematical Society, Providence, RI, 1989. Google Scholar

[40]

S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip, Glasg. Math. J., 49 (2007), 525-588.  doi: 10.1017/S0017089507003849.  Google Scholar

[41]

S. Zelik, Weak spatially nondecaying solutions of 3D Navier-Stokes equations in cylindrical domains, Instability in models connected with fluid flows. II, 255-327, Int. Math. Ser. (N. Y. ), 7, Springer, New York, 2008. Google Scholar

[42]

S. Zelik, Infinite energy solutions for damped Navier-Stokes equations in $\mathbb{R}^{2}$, J. Math. Fluid Mech., 15 (2013), 717-745.  doi: 10.1007/s00021-013-0144-3.  Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Maximal attractors of semigroups corresponding to evolution differential equations, Math. Sb. , 126 (1985), 397-419; English transl. Math USSR Sb. , 54 (1986). Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations North-Holland, Amsterdam, 1992. Google Scholar

[3]

J. Ball, Global attractors for damped semilinear wave equations. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 54 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

V. BarcilonP. Constantin and E. S. Titi, Existence of solutions to the Stommel-Charney model of the Gulf Stream, SIAM J. Math. Anal., 19 (1988), 1355-1364.  doi: 10.1137/0519099.  Google Scholar

[5]

H. Bessaih and F. Flandoli, Weak attractor for a dissipative Euler equation, J. Dynam. Diff. Eq., 12 (2000), 713-732.  doi: 10.1023/A:1009042520953.  Google Scholar

[6]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models Applied Mathematical Sciences, 183. Springer, New York, 2013. Google Scholar

[7]

S. Brull and L. Pareschi, Dissipative hydrodynamic models for the diffusion of impurities in a gas, Appl. Math. Lett., 19 (2006), 516-521.  doi: 10.1016/j.aml.2005.07.008.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for dissipative 2D Euler and Navier-Stokes equations, Russian J. Math. Phys., 15 (2008), 156-170.  doi: 10.1134/S1061920808020039.  Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics Amer. Math. Soc. , Providence, 2002. Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964.  doi: 10.1016/S0021-7824(97)89978-3.  Google Scholar

[11]

V. V. ChepyzhovM. I. Vishik and S. Zelik, A strong trajectory attractor for a dissipative reaction-diffusion system, J. Math. Pures Appl., 96 (2011), 395-407.  doi: 10.1016/j.matpur.2011.04.007.  Google Scholar

[12]

V. V. Chepyzhov and S. Zelik, Infinite energy solutions for dissipative Euler equations in $\mathbb{R}^{2}$, J. Math. Fluid Mech., 17 (2015), 513-532.  doi: 10.1007/s00021-015-0213-x.  Google Scholar

[13]

V. V. Chepyzhov, Trajectory attractors for non-autonomous dissipative 2d Euler equations, Discrete Contin. Dyn. Syst. Series B, 20 (2015), 811-832.  doi: 10.3934/dcdsb.2015.20.811.  Google Scholar

[14]
[15]

R. DiPerna and P. Lions, Ordinary differential equations, Sobolev spaces and transport theory, Invent. Math., 98 (1989), 511-547.  doi: 10.1007/BF01393835.  Google Scholar

[16]

J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Diff. Eq., 110 (1994), 356-359.  doi: 10.1006/jdeq.1994.1071.  Google Scholar

[17]

A. A. Ilyin, The Euler equations with dissipation, Sb. Math. , 182 (1991), 1729-1739; English transl. in Math. USSR-Sb. , 74 (1993), 475{485. Google Scholar

[18]

A. A. IlyinA. Miranville and E. S. Titi, Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations, Commun. Math. Sci., 2 (2004), 403-426.  doi: 10.4310/CMS.2004.v2.n3.a4.  Google Scholar

[19]

A. A. IlyinK. Patni and S. V. Zelik, Upper bounds for the attractor dimension of damped Navier--Stokes equations in $\mathbb R^2$, Discrete Contin. Dyn. Syst., 36 (2016), 2085-2102.  doi: 10.3934/dcds.2016.36.2085.  Google Scholar

[20]

A. A. Ilyin and E. S. Titi, Sharp estimates for the number of degrees of freedom of the damped-driven 2-D Navier-Stokes equations, J. Nonlin. Sci., 16 (2006), 233-253.  doi: 10.1007/s00332-005-0720-7.  Google Scholar

[21]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions, Int. J. Bifurc. Chaos, 20 (2010), 2723-2734.  doi: 10.1142/S0218127410027313.  Google Scholar

[22]

P. O. Kasyanov, Multivalued dynamics of of solutions of autonomous operator differential equations with pseudomonotone nonlinearity, Mat. Zametki, 92 (2012), 225-240; English transl.  doi: 10.1134/S0001434612070231.  Google Scholar

[23]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow Gordon and Breach, New York, 1969. Google Scholar

[24]

J. -L. Lions, Quelques Méthodes de Résolutions des Problémes aux Limites non Linéaires Dunod et Gauthier-Villars, Paris, 1969. Google Scholar

[25]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and generalized differential equations, Set-Valued Anal., 6 (1998), 83-111.  doi: 10.1023/A:1008608431399.  Google Scholar

[26]

I. MoiseR. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity, 11 (1998), 1369-1393.  doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[27]

J. Pedlosky, Geophysical Fluid Dynamics Springer, New York, 1979. Google Scholar

[28]

F. Riesz and B. Sz. -Nagy, Functional Analysis Reprint of the 1955 original, Dover Books on Advanced Mathematics. Dover Publications, Inc. , New York, 1990. Google Scholar

[29]

A. Robertson and W. Robertson, Topological Vector Spaces Reprint of the second edition, Cambridge Tracts in Mathematics, 53, Cambridge University Press, Cambridge-New York, 1980. Google Scholar

[30]

R. Rosa, The global attractor for the 2D Navier--Stokes flow on some unbounded domains, Nonlinear Anal., 32 (1998), 71-85.  doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[31]

J.-C. Saut, Remarks on the damped stationary Euler equations, Diff. Int. Eq., 3 (1990), 801-812.   Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer, New York, 1997. Google Scholar

[33]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam-New York-Oxford, 1977. Google Scholar

[34]

M. I. Vishik and V. V. Chepyzhov, Trajectory attractors of equations of mathematical physics, Uspekhi Mat. Nauk, 66 (2011), 3-102; English tarnsl.  doi: 10.1070/RM2011v066n04ABEH004753.  Google Scholar

[35]

G. Wolansky, Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation, Comm. Pure Appl. Math., 41 (1988), 19-46.  doi: 10.1002/cpa.3160410104.  Google Scholar

[36]

V. I. Yudovich, Some bounds for solutions of elliptic equations, Mat. Sb. , (N. S. ) 59 (1962), 229-244. English transl. in Amer. Math. Soc. Transl. , (2) 56 (1966). Google Scholar

[37]

V. I. Yudovich, Non-Stationary flow of an ideal incompressible fluid, Zh. Vychisl. Mat. Mat. Fiz., 3 (1963), 1032-1066.   Google Scholar

[38]

V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2 (1995), 27-38.  doi: 10.4310/MRL.1995.v2.n1.a4.  Google Scholar

[39]

V. I. Yudovich, The Linearization Method in Hydrodynamical Stability Theory Translations of Mathematical Monographs, 74. American Mathematical Society, Providence, RI, 1989. Google Scholar

[40]

S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip, Glasg. Math. J., 49 (2007), 525-588.  doi: 10.1017/S0017089507003849.  Google Scholar

[41]

S. Zelik, Weak spatially nondecaying solutions of 3D Navier-Stokes equations in cylindrical domains, Instability in models connected with fluid flows. II, 255-327, Int. Math. Ser. (N. Y. ), 7, Springer, New York, 2008. Google Scholar

[42]

S. Zelik, Infinite energy solutions for damped Navier-Stokes equations in $\mathbb{R}^{2}$, J. Math. Fluid Mech., 15 (2013), 717-745.  doi: 10.1007/s00021-013-0144-3.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[7]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[8]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[9]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[10]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[11]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[14]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[15]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[16]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[17]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[18]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[19]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[20]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (52)
  • HTML views (45)
  • Cited by (1)

Other articles
by authors

[Back to Top]