July  2017, 22(5): 1857-1873. doi: 10.3934/dcdsb.2017110

Smooth attractors for weak solutions of the SQG equation with critical dissipation

1. 

Department of Mathematics, University of Maryland, College Park, MD 20742, USA

2. 

Faculty of Mathematics and Computer Science, Jagiellonian University, 30-348 Kraków, Poland

* Corresponding author: Michele Coti Zelati

Received  December 2015 Revised  February 2016 Published  March 2017

We consider the evolution of weak vanishing viscosity solutions to the critically dissipative surface quasi-geostrophic equation. Due to the possible non-uniqueness of solutions, we rephrase the problem as a set-valued dynamical system and prove the existence of a global attractor of optimal Sobolev regularity. To achieve this, we derive a new Sobolev estimate involving Hölder norms, which complement the existing estimates based on commutator analysis.

Citation: Michele Coti Zelati, Piotr Kalita. Smooth attractors for weak solutions of the SQG equation with critical dissipation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1857-1873. doi: 10.3934/dcdsb.2017110
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations North-Holland Publishing Co. , Amsterdam, 1992. Google Scholar

[2]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the NavierStokes equations, J. Nonlinear Sci., 7 (1997), 475-502.  doi: 10.1007/s003329900037.  Google Scholar

[3]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math.(2), 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[4]

V. V. ChepyzhovM. Conti and V. Pata, A minimal approach to the theory of global attractors, Discrete Contin. Dyn. Syst., 32 (2012), 2079-2088.  doi: 10.3934/dcds.2012.32.2079.  Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl.(9), 76 (1997), 913-964.  doi: 10.1016/S0021-7824(97)89978-3.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics American Mathematical Society, Providence, RI, 2002. Google Scholar

[7]

A. Cheskidov and M. Dai, The existence of a global attractor for the forced critical surface quasi-geostrophic equation in $L^2$, preprint, arXiv: 1402.4801. Google Scholar

[8]

A. Cheskidov, Global attractors of evolutionary systems, J. Dynam. Differential Equations, 21 (2009), 249-268.  doi: 10.1007/s10884-009-9133-x.  Google Scholar

[9]

P. ConstantinD. Cordoba and J. Wu, On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J., 50 (2001), 97-107.  doi: 10.1512/iumj.2001.50.2153.  Google Scholar

[10]

P. ConstantinM. Coti Zelati and V. Vicol, On the critical dissipative quasi-geostrophic equation, Nonlinearity, 29 (2016), 298-318.  doi: 10.1088/0951-7715/29/2/298.  Google Scholar

[11]

P. ConstantinA. J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.  doi: 10.1088/0951-7715/7/6/001.  Google Scholar

[12]

P. ConstantinA. Tarfulea and V. Vicol, Absence of anomalous dissipation of energy in forced two dimensional fluid equations, Arch. Ration. Mech. Anal., 212 (2014), 875-903.  doi: 10.1007/s00205-013-0708-7.  Google Scholar

[13]

P. ConstantinA. Tarfulea and V. Vicol, Long time dynamics of forced critical SQG, Comm. Math. Phys., 335 (2015), 93-141.  doi: 10.1007/s00220-014-2129-3.  Google Scholar

[14]

P. Constantin and V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321.  doi: 10.1007/s00039-012-0172-9.  Google Scholar

[15]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[16]

M. Coti Zelati, Long time behavior of subcritical SQG equations in scale-invariant Sobolev spaces, preprint, arXiv: 1512.00497. Google Scholar

[17]

M. Coti Zelati and V. Vicol, On the global regularity for the supercritical SQG equation, Indiana Univ. Math. J., 65 (2016), 535{552, arXiv: 1410.3186. Google Scholar

[18]

M. Coti Zelati, On the theory of global attractors and Lyapunov functionals, Set-Valued Var. Anal., 21 (2013), 127-149.  doi: 10.1007/s11228-012-0215-2.  Google Scholar

[19]

M. Coti Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM J. Math. Anal., 47 (2015), 1530-1561.  doi: 10.1137/140978995.  Google Scholar

[20]

H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness, Discrete Contin. Dyn. Syst., 26 (2010), 1197-1211.  doi: 10.3934/dcds.2010.26.1197.  Google Scholar

[21]

T. DłotkoM.B. Kania and C. Sun, Quasi-geostrophic equation in $\mathbb{R}^2$, J. Differential Equations, 259 (2015), 231-261.  doi: 10.1016/j.jde.2015.02.022.  Google Scholar

[22]

T. Dłotko and C. Sun, 2D Quasi-Geostrophic equation; sub-critical and critical cases, Nonlinear Anal., 150 (2017), 38-60.  doi: 10.1016/j.na.2016.11.005.  Google Scholar

[23]

H. Dong and D. Du, Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst., 21 (2008), 1095-1101.  doi: 10.3934/dcds.2008.21.1095.  Google Scholar

[24]

S. FriedlanderN. Pavlović and V. Vicol, Nonlinear instability for the critically dissipative quasi-geostrophic equation, Comm. Math. Phys., 292 (2009), 797-810.  doi: 10.1007/s00220-009-0851-z.  Google Scholar

[25]

J. K. Hale, Asymptotic Behavior of Dissipative Systems American Mathematical Society, Providence, RI, 1988. Google Scholar

[26]

P. Kalita and G. Lukaszewicz, Global attractors for multivalued semiflows with weak continuity properties, Nonlinear Anal., 101 (2014), 124-143.  doi: 10.1016/j.na.2014.01.026.  Google Scholar

[27]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[28]

C. E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 41 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[29]

A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2009), 58-72.  doi: 10.1007/s10958-010-9842-z.  Google Scholar

[30]

A. KiselevF. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[31]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.  doi: 10.1023/A:1008608431399.  Google Scholar

[32]

J. Pedlosky, Geophysical Fluid Dynamics Springer, Berlin, 1982. Google Scholar

[33]

S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations Ph. D thesis, The University of Chicago, 1995. Google Scholar

[34] J. C. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.   Google Scholar
[35]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations Springer-Verlag, New York, 2002. Google Scholar

[36]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations North-Holland Publishing Co. , Amsterdam, 1992. Google Scholar

[2]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the NavierStokes equations, J. Nonlinear Sci., 7 (1997), 475-502.  doi: 10.1007/s003329900037.  Google Scholar

[3]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math.(2), 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[4]

V. V. ChepyzhovM. Conti and V. Pata, A minimal approach to the theory of global attractors, Discrete Contin. Dyn. Syst., 32 (2012), 2079-2088.  doi: 10.3934/dcds.2012.32.2079.  Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl.(9), 76 (1997), 913-964.  doi: 10.1016/S0021-7824(97)89978-3.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics American Mathematical Society, Providence, RI, 2002. Google Scholar

[7]

A. Cheskidov and M. Dai, The existence of a global attractor for the forced critical surface quasi-geostrophic equation in $L^2$, preprint, arXiv: 1402.4801. Google Scholar

[8]

A. Cheskidov, Global attractors of evolutionary systems, J. Dynam. Differential Equations, 21 (2009), 249-268.  doi: 10.1007/s10884-009-9133-x.  Google Scholar

[9]

P. ConstantinD. Cordoba and J. Wu, On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J., 50 (2001), 97-107.  doi: 10.1512/iumj.2001.50.2153.  Google Scholar

[10]

P. ConstantinM. Coti Zelati and V. Vicol, On the critical dissipative quasi-geostrophic equation, Nonlinearity, 29 (2016), 298-318.  doi: 10.1088/0951-7715/29/2/298.  Google Scholar

[11]

P. ConstantinA. J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.  doi: 10.1088/0951-7715/7/6/001.  Google Scholar

[12]

P. ConstantinA. Tarfulea and V. Vicol, Absence of anomalous dissipation of energy in forced two dimensional fluid equations, Arch. Ration. Mech. Anal., 212 (2014), 875-903.  doi: 10.1007/s00205-013-0708-7.  Google Scholar

[13]

P. ConstantinA. Tarfulea and V. Vicol, Long time dynamics of forced critical SQG, Comm. Math. Phys., 335 (2015), 93-141.  doi: 10.1007/s00220-014-2129-3.  Google Scholar

[14]

P. Constantin and V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321.  doi: 10.1007/s00039-012-0172-9.  Google Scholar

[15]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[16]

M. Coti Zelati, Long time behavior of subcritical SQG equations in scale-invariant Sobolev spaces, preprint, arXiv: 1512.00497. Google Scholar

[17]

M. Coti Zelati and V. Vicol, On the global regularity for the supercritical SQG equation, Indiana Univ. Math. J., 65 (2016), 535{552, arXiv: 1410.3186. Google Scholar

[18]

M. Coti Zelati, On the theory of global attractors and Lyapunov functionals, Set-Valued Var. Anal., 21 (2013), 127-149.  doi: 10.1007/s11228-012-0215-2.  Google Scholar

[19]

M. Coti Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM J. Math. Anal., 47 (2015), 1530-1561.  doi: 10.1137/140978995.  Google Scholar

[20]

H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness, Discrete Contin. Dyn. Syst., 26 (2010), 1197-1211.  doi: 10.3934/dcds.2010.26.1197.  Google Scholar

[21]

T. DłotkoM.B. Kania and C. Sun, Quasi-geostrophic equation in $\mathbb{R}^2$, J. Differential Equations, 259 (2015), 231-261.  doi: 10.1016/j.jde.2015.02.022.  Google Scholar

[22]

T. Dłotko and C. Sun, 2D Quasi-Geostrophic equation; sub-critical and critical cases, Nonlinear Anal., 150 (2017), 38-60.  doi: 10.1016/j.na.2016.11.005.  Google Scholar

[23]

H. Dong and D. Du, Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst., 21 (2008), 1095-1101.  doi: 10.3934/dcds.2008.21.1095.  Google Scholar

[24]

S. FriedlanderN. Pavlović and V. Vicol, Nonlinear instability for the critically dissipative quasi-geostrophic equation, Comm. Math. Phys., 292 (2009), 797-810.  doi: 10.1007/s00220-009-0851-z.  Google Scholar

[25]

J. K. Hale, Asymptotic Behavior of Dissipative Systems American Mathematical Society, Providence, RI, 1988. Google Scholar

[26]

P. Kalita and G. Lukaszewicz, Global attractors for multivalued semiflows with weak continuity properties, Nonlinear Anal., 101 (2014), 124-143.  doi: 10.1016/j.na.2014.01.026.  Google Scholar

[27]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[28]

C. E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 41 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[29]

A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2009), 58-72.  doi: 10.1007/s10958-010-9842-z.  Google Scholar

[30]

A. KiselevF. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[31]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.  doi: 10.1023/A:1008608431399.  Google Scholar

[32]

J. Pedlosky, Geophysical Fluid Dynamics Springer, Berlin, 1982. Google Scholar

[33]

S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations Ph. D thesis, The University of Chicago, 1995. Google Scholar

[34] J. C. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.   Google Scholar
[35]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations Springer-Verlag, New York, 2002. Google Scholar

[36]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. Google Scholar

[1]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[2]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[3]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[4]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[5]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[6]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[7]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[8]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[9]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[10]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[11]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[12]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[13]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[14]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[15]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[16]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[17]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[18]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[19]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[20]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (47)
  • HTML views (78)
  • Cited by (3)

Other articles
by authors

[Back to Top]