July  2017, 22(5): 1875-1886. doi: 10.3934/dcdsb.2017111

Global attractors of impulsive parabolic inclusions

1. 

Institute of Mathematics, University of Würzburg, Emil-Fischer-Straße 40, Würzburg, Germany

2. 

Taras Shevchenko National University of Kyiv, Department of Mathematics and Mechanics, Volodymyrska Str. 60,01033, Kyiv, Ukraine

* Corresponding author: O. Kapustyan

This work is supported by the German Research Foundation (DFG) via grant DA 767/8-1 The second author is also supported by the State Fund For Fundamental Research, Grant of President of Ukraine, Project F62/94-2015.

Received  November 2015 Revised  March 2016 Published  March 2017

In this work we consider an impulsive multi-valued dynamical system generated by a parabolic inclusion with upper semicontinuous right-hand side $\varepsilon F(y)$ and with impulsive multi-valued perturbations. Moments of impulses are not fixed and defined by moments of intersection of solutions with some subset of the phase space. We prove that for sufficiently small value of the parameter $\varepsilon>0$ this system has a global attractor.

Citation: Sergey Dashkovskiy, Oleksiy Kapustyan, Iryna Romaniuk. Global attractors of impulsive parabolic inclusions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1875-1886. doi: 10.3934/dcdsb.2017111
References:
[1]

M. U. Akhmet, Perturbations and Hopf bifurcation of the planar discontinuous dynamical system, Nonlinear Anal., 60 (2005), 163-178.  doi: 10.1016/S0362-546X(04)00347-5.

[2]

V. Barbu, Nonlimear Semigroups and Differential Equations in Banach Spaces, Bucuresti : Editura Academiei, 1976.

[3]

E. M. Bonotto, Flows of characteristic 0+ in impulsive semidynamical systems, J. Math. Anal. Appl., 332 (2007), 81-96.  doi: 10.1016/j.jmaa.2006.09.076.

[4]

E. M. Bonotto and D. P. Demuner, Attractors of impulsive dissipative semidynamical systems, Bull. Sci. Math., 137 (2013), 617-642.  doi: 10.1016/j.bulsci.2012.12.005.

[5]

E. M. BonottoM. C. BortolanA. N. Carvalho and R. Czaja, Global attractors for impulsive dynamical systems -a precompact approach, J. Diff. Eqn., 259 (2015), 2602-2625.  doi: 10.1016/j.jde.2015.03.033.

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors of Equations of Mathematical Physics AMS, 2002.

[7]

K. Ciesielski, On stability in impulsive dynamical systems, Bull. Pol. Acad. Sci. Math., 52 (2004), 81-91.  doi: 10.4064/ba52-1-9.

[8]

S. Dachkovski, Anisotropic function spaces and related semi-linear hypoelliptic equations, Math. Nachr., 248 (2003), 40-61.  doi: 10.1002/mana.200310002.

[9]

S. Dashkovskiy and A. Mironchenko, Input-to-state stability of nonlinear impulsive systems, SIAM J. Control. Optim., 51 (2013), 1962-1987.  doi: 10.1137/120881993.

[10]

Z. Denkowski and S. Mortola, Asymptotic behavior of optimal solutions to control problems for systems described by differential inclusions corresponding to partial differential equations, J. Optim. Theory Appl., 78 (1993), 365-391.  doi: 10.1007/BF00939675.

[11]

G. IovaneO. V. Kapustyan and J. Valero, Asymptotic behaviour of reaction-diffusion equations with non-damped impulsive effects, Nonlinear Analysis, 68 (2008), 2516-2530.  doi: 10.1016/j.na.2007.02.002.

[12]

A. V. Kapustyan and V. S. Mel'nik, On global attractors of multivalued semidynamical systems and their approximations, Doklady Academii Nauk., 366 (1999), 445-448. 

[13]

O. V. Kapustyan and D. V. Shkundin, Global attractor of one nonlinear parabolic equitation, Ukrainian Math. J., 55 (2003), 446-455.  doi: 10.1023/B:UKMA.0000010155.48722.f2.

[14]

O. V. KapustyanV. S. Melnik and J. Valero, A weak attractor and properties of solutions for the three-dimensional Benard problem, Discrete and Continuous Dynamical Systems, 18 (2007), 449-481.  doi: 10.3934/dcds.2007.18.449.

[15]

O. V. KapustyanP. O. Kasyanov and J. Valero, Pullback attractors for some class of extremal solutions of 3D Navier-Stokes system, J. Math. Anal. Appl., 373 (2011), 535-547.  doi: 10.1016/j.jmaa.2010.07.040.

[16]

O. V. KapustyanP. O. Kasyanov and J. Valero, Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term, Discrete and continuous dynamical systems, 34 (2014), 4155-4182.  doi: 10.3934/dcds.2014.34.4155.

[17]

P. O. Kasyanov, Multivalued dynamics of solutions of autonomous differential-operator inclusion with pseudomonotone nonlinearity, Cybernetics and Systems Analysis., 47 (2011), 800-811.  doi: 10.1007/s10559-011-9359-6.

[18]

S. K. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl., 150 (1990), 120-128.  doi: 10.1016/0022-247X(90)90199-P.

[19]

S. K. Kaul, Stability and asymptotic stability in impulsive semidynamical systems, J. Appl. Math. Stoch. Anal., 7 (1994), 509-523.  doi: 10.1155/S1048953394000390.

[20]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.  doi: 10.1023/A:1008608431399.

[21]

Y. M. Perestjuk, Discontinuous oscillations in an impulsive system, J. Math. Sci., 194 (2013), 404-413.  doi: 10.1007/s10958-013-1536-x.

[22]

V. Rozko, Stability in terms of Lyapunov of discontinuous dynamic systems, Differ.Uravn., 11 (1975), 1005-1012. 

[23]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equitations Singapore : World Scientific, 1995.

[24]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer, New York, 1988.

[25]

J. Valero, Finite and infinite-dimensional attractors of multivalued reaction-diffusion equations, Acta Mathematica Hungar., 88 (2000), 239-258.  doi: 10.1023/A:1006769315268.

[26]

M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero and N. V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing Ⅲ. Long-Time Behaviour of Evolution Inclusions Solutions in Earth Data Analysis Springer, Heidelberg, 2012.

show all references

This work is supported by the German Research Foundation (DFG) via grant DA 767/8-1
The second author is also supported by the State Fund For Fundamental Research, Grant of President of Ukraine, Project F62/94-2015.

References:
[1]

M. U. Akhmet, Perturbations and Hopf bifurcation of the planar discontinuous dynamical system, Nonlinear Anal., 60 (2005), 163-178.  doi: 10.1016/S0362-546X(04)00347-5.

[2]

V. Barbu, Nonlimear Semigroups and Differential Equations in Banach Spaces, Bucuresti : Editura Academiei, 1976.

[3]

E. M. Bonotto, Flows of characteristic 0+ in impulsive semidynamical systems, J. Math. Anal. Appl., 332 (2007), 81-96.  doi: 10.1016/j.jmaa.2006.09.076.

[4]

E. M. Bonotto and D. P. Demuner, Attractors of impulsive dissipative semidynamical systems, Bull. Sci. Math., 137 (2013), 617-642.  doi: 10.1016/j.bulsci.2012.12.005.

[5]

E. M. BonottoM. C. BortolanA. N. Carvalho and R. Czaja, Global attractors for impulsive dynamical systems -a precompact approach, J. Diff. Eqn., 259 (2015), 2602-2625.  doi: 10.1016/j.jde.2015.03.033.

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors of Equations of Mathematical Physics AMS, 2002.

[7]

K. Ciesielski, On stability in impulsive dynamical systems, Bull. Pol. Acad. Sci. Math., 52 (2004), 81-91.  doi: 10.4064/ba52-1-9.

[8]

S. Dachkovski, Anisotropic function spaces and related semi-linear hypoelliptic equations, Math. Nachr., 248 (2003), 40-61.  doi: 10.1002/mana.200310002.

[9]

S. Dashkovskiy and A. Mironchenko, Input-to-state stability of nonlinear impulsive systems, SIAM J. Control. Optim., 51 (2013), 1962-1987.  doi: 10.1137/120881993.

[10]

Z. Denkowski and S. Mortola, Asymptotic behavior of optimal solutions to control problems for systems described by differential inclusions corresponding to partial differential equations, J. Optim. Theory Appl., 78 (1993), 365-391.  doi: 10.1007/BF00939675.

[11]

G. IovaneO. V. Kapustyan and J. Valero, Asymptotic behaviour of reaction-diffusion equations with non-damped impulsive effects, Nonlinear Analysis, 68 (2008), 2516-2530.  doi: 10.1016/j.na.2007.02.002.

[12]

A. V. Kapustyan and V. S. Mel'nik, On global attractors of multivalued semidynamical systems and their approximations, Doklady Academii Nauk., 366 (1999), 445-448. 

[13]

O. V. Kapustyan and D. V. Shkundin, Global attractor of one nonlinear parabolic equitation, Ukrainian Math. J., 55 (2003), 446-455.  doi: 10.1023/B:UKMA.0000010155.48722.f2.

[14]

O. V. KapustyanV. S. Melnik and J. Valero, A weak attractor and properties of solutions for the three-dimensional Benard problem, Discrete and Continuous Dynamical Systems, 18 (2007), 449-481.  doi: 10.3934/dcds.2007.18.449.

[15]

O. V. KapustyanP. O. Kasyanov and J. Valero, Pullback attractors for some class of extremal solutions of 3D Navier-Stokes system, J. Math. Anal. Appl., 373 (2011), 535-547.  doi: 10.1016/j.jmaa.2010.07.040.

[16]

O. V. KapustyanP. O. Kasyanov and J. Valero, Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term, Discrete and continuous dynamical systems, 34 (2014), 4155-4182.  doi: 10.3934/dcds.2014.34.4155.

[17]

P. O. Kasyanov, Multivalued dynamics of solutions of autonomous differential-operator inclusion with pseudomonotone nonlinearity, Cybernetics and Systems Analysis., 47 (2011), 800-811.  doi: 10.1007/s10559-011-9359-6.

[18]

S. K. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl., 150 (1990), 120-128.  doi: 10.1016/0022-247X(90)90199-P.

[19]

S. K. Kaul, Stability and asymptotic stability in impulsive semidynamical systems, J. Appl. Math. Stoch. Anal., 7 (1994), 509-523.  doi: 10.1155/S1048953394000390.

[20]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.  doi: 10.1023/A:1008608431399.

[21]

Y. M. Perestjuk, Discontinuous oscillations in an impulsive system, J. Math. Sci., 194 (2013), 404-413.  doi: 10.1007/s10958-013-1536-x.

[22]

V. Rozko, Stability in terms of Lyapunov of discontinuous dynamic systems, Differ.Uravn., 11 (1975), 1005-1012. 

[23]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equitations Singapore : World Scientific, 1995.

[24]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer, New York, 1988.

[25]

J. Valero, Finite and infinite-dimensional attractors of multivalued reaction-diffusion equations, Acta Mathematica Hungar., 88 (2000), 239-258.  doi: 10.1023/A:1006769315268.

[26]

M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero and N. V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing Ⅲ. Long-Time Behaviour of Evolution Inclusions Solutions in Earth Data Analysis Springer, Heidelberg, 2012.

[1]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179

[2]

Yejuan Wang. On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3669-3708. doi: 10.3934/dcdsb.2016116

[3]

Yejuan Wang, Tomás Caraballo. Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2303-2326. doi: 10.3934/dcdss.2020092

[4]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[5]

Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036

[6]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[7]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[8]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257

[9]

P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692

[10]

Zeng-bao Wu, Yun-zhi Zou, Nan-jing Huang. A new class of global fractional-order projective dynamical system with an application. Journal of Industrial and Management Optimization, 2020, 16 (1) : 37-53. doi: 10.3934/jimo.2018139

[11]

Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004

[12]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[13]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Dynamical behaviour of a large complex system. Communications on Pure and Applied Analysis, 2008, 7 (2) : 249-265. doi: 10.3934/cpaa.2008.7.249

[14]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[15]

Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012

[16]

Jingyu Wang, Yejuan Wang, Tomás Caraballo. Multi-valued random dynamics of stochastic wave equations with infinite delays. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021310

[17]

Elisabetta Rocca, Giulio Schimperna. Global attractor for a parabolic-hyperbolic Penrose-Fife phase field system. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1193-1214. doi: 10.3934/dcds.2006.15.1193

[18]

Cui-Ping Cheng, Ruo-Fan An. Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29 (5) : 3535-3550. doi: 10.3934/era.2021051

[19]

Xiaoqiang Dai, Wenke Li. Non-global solution for visco-elastic dynamical system with nonlinear source term in control problem. Electronic Research Archive, 2021, 29 (6) : 4087-4098. doi: 10.3934/era.2021073

[20]

Julian Newman. Synchronisation of almost all trajectories of a random dynamical system. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4163-4177. doi: 10.3934/dcds.2020176

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (235)
  • HTML views (71)
  • Cited by (5)

[Back to Top]