We study the long time behavior of state functions for a climate energy balance model (so-called Budyko Model). Existence and properties of weak solutions, and existence of Lyapunov function are obtained. Existence, structure and regularity properties for global and trajectory attractors are justified.
Citation: |
[1] |
J. M. Arrieta, A. Rodrígues-Bernal and J. Valero, Dynamics of a reaction-diffusion equation with discontinuous nonlinearity, International Journal of Bifurcation and Chaos, 16 (2006), 2695-2984.
doi: 10.1142/S0218127406016586.![]() ![]() ![]() |
[2] |
T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampére Equations, Springer, Berlin, 1980.
![]() |
[3] |
F. Balibrea, T. Caraballo, P. E. Kloeden and J. Valero, Recent developments in dynamical systems: Three perspectives, International Journal of Bifurcation and Chaos, 20 (2010), 2591-2636.
doi: 10.1142/S0218127410027246.![]() ![]() ![]() |
[4] |
J. M. Ball, Continuity properties and global attractors of generalized semiflows and the NavierStokes equations. Nonlinear Science, 7 (1997), 475-502 Erratum, ibid 8: 233,1998. Corrected version appears in Mechanics: from Theory to Computation. Springer Verlag, (2000), 447-474.
![]() |
[5] |
J. M. Ball, Global attractors for damped semilinear wave equations, DCDS, 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31.![]() ![]() ![]() |
[6] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucuresti, 1976.
![]() |
[7] |
M. I. Budyko, The effects of solar radiation variations, on the climate of the Earth, Tellus, 21 (1969), 611-619.
doi: 10.3402/tellusa.v21i5.10109.![]() ![]() |
[8] |
V. V. Chepyzhov and M. I. Vishik, Trajectory and global attractors for 3D Navier-Stokes system, Mathematical Notes, 71 (2002), 177-193.
doi: 10.1023/A:1014190629738.![]() ![]() ![]() |
[9] |
V. V. Chepyzhov and M. I. Vishik, Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time, Discrete and Continuous Dynamical Systems, 27 (2010), 1498-1509.
doi: 10.3934/dcds.2010.27.1493.![]() ![]() ![]() |
[10] |
V. V. Chepyzhov, M. Conti and V. Pata, A minimal approach to the theory of global attractors, Discrete and Continuous Dynamical Systems, 32 (2012), 2079-2088.
doi: 10.3934/dcds.2012.32.2079.![]() ![]() ![]() |
[11] |
F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, Inc. , New York, 1983.
![]() |
[12] |
H. Díaz and J. Díaz, On a stochastic parabolic PDE arising in climatology, Rev. R. Acad. Cien. Serie A Mat., 96 (2002), 123-128.
![]() ![]() |
[13] |
J. Díaz, J. Hernández and L. Tello, On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology, J. Math. Anal. Appl., 216 (1997), 593-613.
doi: 10.1006/jmaa.1997.5691.![]() ![]() ![]() |
[14] |
J. Díaz, J. Hernández and L. Tello, Some results about multiplicity and bifurcation of stationary solutions of a reaction diffusion climatological model, Rev. R. Acad. Cien. Serie A. Mat., 96 (2002), 357-366.
![]() ![]() |
[15] |
J. Díaz and L. Tello, Infinitely many stationary solutions for a simple climate model via a shooting method, Math. Meth. Appl. Sci., 25 (2002), 327-334.
doi: 10.1002/mma.289.![]() ![]() ![]() |
[16] |
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $R^3$, Comptes Rendus de l'Academie des Sciences-Series I -Mathematics, 330 (2000), 713-718.
doi: 10.1016/S0764-4442(00)00259-7.![]() ![]() |
[17] |
E. Feireisl and J. Norbury, Some existence and nonuniqueness theorems for solutions of parabolic equations with discontinuous nonlinearities, Proc. Roy. Soc. Edinburgh A., 119 (1991), 1-17.
doi: 10.1017/S0308210500028262.![]() ![]() ![]() |
[18] |
H. Gajewski, K. Gröger and K. Zacharias,
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen Akademie-Verlag, Berlin, 1975.
![]() |
[19] |
M. O. Gluzman, N. V. Gorban and P. O. Kasyanov, Lyapunov type functions for classes of autonomous parabolic feedback control problems and applications, Applied Mathematics Letters, 39 (2015), 19-21.
![]() |
[20] |
M. O. Gluzman, N. V. Gorban and P. O. Kasyanov, Lyapunov functions for differential inclusions and applications in physics, biology, and climatology, Continuous and distributed systems Ⅱ. Theory and applications, Series studies in systems. Decis. Control, 30 (2015), 233-243.
doi: 10.1007/978-3-319-19075-4_14.![]() ![]() |
[21] |
M. O. Gluzman, N. V. Gorban and P. O. Kasyanov, Lyapunov functions for weak solutions of reaction-diffusion equations with discontinuous interaction functions and its applications, Nonautonomous Dyn. Syst., 2 (2015), 1-11.
doi: 10.1515/msds-2015-0001.![]() ![]() ![]() |
[22] |
G. R. Goldstein and A. Miranville, A Cahn-Hilliard-Gurtin model with dynamic boundary conditions, Discrete & Continuous Dynamical Systems -Series S, 6 (2013), 387-400.
doi: 10.3934/dcdss.2013.6.387.![]() ![]() ![]() |
[23] |
N. V. Gorban, O. V. Kapustyan and P. O. Kasyanov, Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Caratheodory's nonlinearity, Nonlinear Analysis, Theory, Methods and Applications, 98 (2014), 13-26.
doi: 10.1016/j.na.2013.12.004.![]() ![]() ![]() |
[24] |
N. V. Gorban and P. O. Kasyanov, On regularity of all weak solutions and their attractors for reaction-diffusion inclusion in unbounded domain, Continuous and Distributed Systems. Theory and Applications, Solid Mechanics and its Applications, 211 (2013), 205-220.
doi: 10.1007/978-3-319-03146-0_15.![]() ![]() |
[25] |
N. V. Gorban, O. V. Kapustyan, P. O. Kasyanov and L. S. Paliichuk, On global attractors for autonomous damped wave equation with discontinuous nonlinearity, Continuous and Distributed Systems. Theory and Applications, Solid Mechanics and its Applications, 211 (2014), 221-237.
doi: 10.1007/978-3-319-03146-0_16.![]() ![]() ![]() |
[26] |
N. V. Gorban, M. O. Gluzman, P. O. Kasyanov and A. M. Tkachuk, Long-Time Behavior of State Functions for Budyko Models, Continuous and distributed systems Ⅲ Series studies in systems. Decis. Control, 69 (2016), 351-359.
doi: 10.1007/978-3-319-40673-2_18.![]() ![]() |
[27] |
P. Kalita and G. Lukaszewicz, Global attractors for multivalued semiflows with weak continuity properties, Nonlinear Analysis: Theory, Methods & Applications, 101 (2014), 124-143.
doi: 10.1016/j.na.2014.01.026.![]() ![]() ![]() |
[28] |
P. Kalita and G. Lukaszewicz, Attractors for Navier-Stokes flows with multivalued and nonmonotone subdifferential boundary conditions, Nonlinear Analysis: Real World Applications, 19 (2014), 75-88.
doi: 10.1016/j.nonrwa.2014.03.002.![]() ![]() ![]() |
[29] |
O. V. Kapustyan, P. O. Kasyanov, J. Valero and M. Z. Zgurovsky, Sructure of uniform global attractor for general non-autonomous reaction-diffusion system, Continuous and Distributed Systems: Theory and Applications, Solid Mechanics and Its Applications, 211 (2014), 163-180.
doi: 10.1007/978-3-319-03146-0_12.![]() ![]() ![]() |
[30] |
O. V. Kapustyan, P. O. Kasyanov and J. Valero, Regular solutions and global attractors for reaction-diffusion systems without uniqueness, Communications on Pure and Applied Analysis, 13 (2014), 1891-1906.
doi: 10.3934/cpaa.2014.13.1891.![]() ![]() ![]() |
[31] |
O. V. Kapustyan, P. O. Kasyanov and J. Valero, Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term, DCDS-B, 34 (2014), 4155-4182.
doi: 10.3934/dcds.2014.34.4155.![]() ![]() ![]() |
[32] |
O. V. Kapustyan and D. V. Shkundin, Global attractor of one nonlinear parabolic equation, Ukrainian Mathematical Journal, 55 (2003), 535-547.
doi: 10.1023/B:UKMA.0000010155.48722.f2.![]() ![]() ![]() |
[33] |
P. O. Kasyanov, L. Toscano and N. V. Zadoianchuk, Regularity of weak solutions and their attractors for a parabolic feedback control problem, Set-Valued and Variational Analysis, 21 (2013), 271-282.
doi: 10.1007/s11228-013-0233-8.![]() ![]() ![]() |
[34] |
P. O. Kasyanov, Multivalued dynamics of solutions of an autonomous differential-operator inclusion with pseudomonotone nonlinearity, Cybernetics and Systems Analysis, 47 (2011), 800-811.
doi: 10.1007/s10559-011-9359-6.![]() ![]() ![]() |
[35] |
P. O. Kasyanov, Multivalued dynamics of solutions of autonomous operator differential equations with pseudomonotone nonlinearity, Mathematical Notes, 92 (2012), 205-218.
doi: 10.1134/S0001434612070231.![]() ![]() ![]() |
[36] |
P. O. Kasyanov, L. Toscano and N. V. Zadoianchuk, Long-time behaviour of solutions for autonomous evolution hemivariational inequality with multidimensional reaction-displacement law Abstract and Applied Analysis (2012), Art. ID 450984, 21 pp.
![]() |
[37] |
V.S. Melnik and J. Valero, On attractors of multivalued semiflows and differential inclusions, Set Valued Anal., 6 (1998), 83-111.
doi: 10.1023/A:1008608431399.![]() ![]() ![]() |
[38] |
S. Migórski, On the existence of solutions for parabolic hemivariational inequalities, Journal of Computational and Applied Mathematics, 129 (2001), 77-87.
doi: 10.1016/S0377-0427(00)00543-4.![]() ![]() ![]() |
[39] |
S. Migórski and A. Ochal, Optimal control of parabolic hemivariational inequalities, Journal of Global Optimization, 17 (2000), 285-300.
doi: 10.1023/A:1026555014562.![]() ![]() ![]() |
[40] |
F. Morillas and J. Valero, Attractors for reaction-diffusion equation in $R^n$ with continuous nonlinearity, Asymptotic Analysis, 44 (2005), 111-130.
![]() ![]() |
[41] |
M. Otani and H. Fujita, On existence of strong solutions for $\frac{{du}}{{dt}}(t)+\partial\varphi^1(u(t))-\partial\varphi^2(u(t))\ni f(t)$, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, 24 (1977), 575-605.
![]() |
[42] |
P. D. Panagiotopoulos,
Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions Birkhauser, Basel, 1985.
![]() |
[43] |
G. R. Sell and Yu. You,
Dynamics of Evolutionary Equations Springer, New York, 2002.
![]() |
[44] |
W. D. Sellers, A global climatic model based on the energy balance of the Earth-atmosphere system, J. Appl. Meteorol., 8 (1989), 392-400.
doi: 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.![]() ![]() |
[45] |
R. Temam,
Infinite-Dimensional Dynamical Systems in Mechanics and Physics Appl. Math. Sci. , Springer-Verlag, New York, 1988.
![]() |
[46] |
D. Terman, A free boundary problem arising from a bistable reaction-diffusion equation, Siam J. Math. Anal., 14 (1983), 1107-1129.
doi: 10.1137/0514086.![]() ![]() ![]() |
[47] |
D. Terman, A free boundary arising from a model for nerve conduction, J. Diff. Eqs., 58 (1985), 345-363.
doi: 10.1016/0022-0396(85)90004-X.![]() ![]() ![]() |
[48] |
J. Valero, Attractors of parabolic equations without uniqueness, Journal of Dynamics and Differential Equations, 13 (2001), 711-744.
doi: 10.1023/A:1016642525800.![]() ![]() ![]() |
[49] |
J. Valero and A. V. Kapustyan, On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems, J Math Anal Appl., 323 (2006), 614-633.
doi: 10.1016/j.jmaa.2005.10.042.![]() ![]() ![]() |
[50] |
M. I. Vishik, S. V. Zelik and V. V. Chepyzhov, Strong trajectory attractor for a dissipative reaction-diffusion system, Doklady Mathematics, 82 (2010), 869-873.
doi: 10.1134/S1064562410060086.![]() ![]() ![]() |
[51] |
N. V. Zadoianchuk and P. O. Kasyanov, Dynamics of solutions of a class of second-order autonomous evolution inclusions, Cybernetics and Systems Analysis, 48 (2012), 414-428.
doi: 10.1007/s10559-012-9421-z.![]() ![]() ![]() |
[52] |
M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero and N. V. Zadoianchuk,
Evolution Inclusions and Variation Inequalities for Earth Data Processing III Springer, Berlin, 2012.
![]() |
[53] |
M. Z. Zgurovsky and P. O. Kasyanov, Multivalued dynamics of solutions for autonomous operator differential equations in strongest topologies, Continuous and Distributed Systems. Theory and Applications. Solid Mechanics and its Applications, 211 (2014), 149-162.
doi: 10.1007/978-3-319-03146-0_11.![]() ![]() ![]() |
[54] |
M. Z. Zgurovsky, P. O. Kasyanov and N. V. Zadoianchuk, Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem, Applied Mathematics Letters, 25 (2012), 1569-1574.
doi: 10.1016/j.aml.2012.01.016.![]() ![]() ![]() |