-
Previous Article
Regularity of global attractors for reaction-diffusion systems with no more than quadratic growth
- DCDS-B Home
- This Issue
-
Next Article
Global attractors of impulsive parabolic inclusions
Long-time behavior of state functions for climate energy balance model
1. | Institute for Applied System Analysis, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine |
2. | National University of Food Technologies, Kyiv, Ukraine |
We study the long time behavior of state functions for a climate energy balance model (so-called Budyko Model). Existence and properties of weak solutions, and existence of Lyapunov function are obtained. Existence, structure and regularity properties for global and trajectory attractors are justified.
References:
[1] |
J. M. Arrieta, A. Rodrígues-Bernal and J. Valero,
Dynamics of a reaction-diffusion equation with discontinuous nonlinearity, International Journal of Bifurcation and Chaos, 16 (2006), 2695-2984.
doi: 10.1142/S0218127406016586. |
[2] |
T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampére Equations, Springer, Berlin, 1980. Google Scholar |
[3] |
F. Balibrea, T. Caraballo, P. E. Kloeden and J. Valero,
Recent developments in dynamical systems: Three perspectives, International Journal of Bifurcation and Chaos, 20 (2010), 2591-2636.
doi: 10.1142/S0218127410027246. |
[4] |
J. M. Ball, Continuity properties and global attractors of generalized semiflows and the NavierStokes equations. Nonlinear Science, 7 (1997), 475-502 Erratum, ibid 8: 233,1998. Corrected version appears in Mechanics: from Theory to Computation. Springer Verlag, (2000), 447-474. Google Scholar |
[5] |
J. M. Ball,
Global attractors for damped semilinear wave equations, DCDS, 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31. |
[6] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucuresti, 1976. Google Scholar |
[7] |
M. I. Budyko,
The effects of solar radiation variations, on the climate of the Earth, Tellus, 21 (1969), 611-619.
doi: 10.3402/tellusa.v21i5.10109. |
[8] |
V. V. Chepyzhov and M. I. Vishik,
Trajectory and global attractors for 3D Navier-Stokes system, Mathematical Notes, 71 (2002), 177-193.
doi: 10.1023/A:1014190629738. |
[9] |
V. V. Chepyzhov and M. I. Vishik,
Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time, Discrete and Continuous Dynamical Systems, 27 (2010), 1498-1509.
doi: 10.3934/dcds.2010.27.1493. |
[10] |
V. V. Chepyzhov, M. Conti and V. Pata,
A minimal approach to the theory of global attractors, Discrete and Continuous Dynamical Systems, 32 (2012), 2079-2088.
doi: 10.3934/dcds.2012.32.2079. |
[11] |
F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, Inc. , New York, 1983. Google Scholar |
[12] |
H. Díaz and J. Díaz,
On a stochastic parabolic PDE arising in climatology, Rev. R. Acad. Cien. Serie A Mat., 96 (2002), 123-128.
|
[13] |
J. Díaz, J. Hernández and L. Tello,
On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology, J. Math. Anal. Appl., 216 (1997), 593-613.
doi: 10.1006/jmaa.1997.5691. |
[14] |
J. Díaz, J. Hernández and L. Tello,
Some results about multiplicity and bifurcation of stationary solutions of a reaction diffusion climatological model, Rev. R. Acad. Cien. Serie A. Mat., 96 (2002), 357-366.
|
[15] |
J. Díaz and L. Tello,
Infinitely many stationary solutions for a simple climate model via a shooting method, Math. Meth. Appl. Sci., 25 (2002), 327-334.
doi: 10.1002/mma.289. |
[16] |
M. Efendiev, A. Miranville and S. Zelik,
Exponential attractors for a nonlinear reaction-diffusion system in $R^3$, Comptes Rendus de l'Academie des Sciences-Series I -Mathematics, 330 (2000), 713-718.
doi: 10.1016/S0764-4442(00)00259-7. |
[17] |
E. Feireisl and J. Norbury,
Some existence and nonuniqueness theorems for solutions of parabolic equations with discontinuous nonlinearities, Proc. Roy. Soc. Edinburgh A., 119 (1991), 1-17.
doi: 10.1017/S0308210500028262. |
[18] |
H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen Akademie-Verlag, Berlin, 1975. Google Scholar |
[19] |
M. O. Gluzman, N. V. Gorban and P. O. Kasyanov, Lyapunov type functions for classes of autonomous parabolic feedback control problems and applications, Applied Mathematics Letters, 39 (2015), 19-21. Google Scholar |
[20] |
M. O. Gluzman, N. V. Gorban and P. O. Kasyanov,
Lyapunov functions for differential inclusions and applications in physics, biology, and climatology, Continuous and distributed systems Ⅱ. Theory and applications, Series studies in systems. Decis. Control, 30 (2015), 233-243.
doi: 10.1007/978-3-319-19075-4_14. |
[21] |
M. O. Gluzman, N. V. Gorban and P. O. Kasyanov,
Lyapunov functions for weak solutions of reaction-diffusion equations with discontinuous interaction functions and its applications, Nonautonomous Dyn. Syst., 2 (2015), 1-11.
doi: 10.1515/msds-2015-0001. |
[22] |
G. R. Goldstein and A. Miranville,
A Cahn-Hilliard-Gurtin model with dynamic boundary conditions, Discrete & Continuous Dynamical Systems -Series S, 6 (2013), 387-400.
doi: 10.3934/dcdss.2013.6.387. |
[23] |
N. V. Gorban, O. V. Kapustyan and P. O. Kasyanov,
Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Caratheodory's nonlinearity, Nonlinear Analysis, Theory, Methods and Applications, 98 (2014), 13-26.
doi: 10.1016/j.na.2013.12.004. |
[24] |
N. V. Gorban and P. O. Kasyanov,
On regularity of all weak solutions and their attractors for reaction-diffusion inclusion in unbounded domain, Continuous and Distributed Systems. Theory and Applications, Solid Mechanics and its Applications, 211 (2013), 205-220.
doi: 10.1007/978-3-319-03146-0_15. |
[25] |
N. V. Gorban, O. V. Kapustyan, P. O. Kasyanov and L. S. Paliichuk,
On global attractors for autonomous damped wave equation with discontinuous nonlinearity, Continuous and Distributed Systems. Theory and Applications, Solid Mechanics and its Applications, 211 (2014), 221-237.
doi: 10.1007/978-3-319-03146-0_16. |
[26] |
N. V. Gorban, M. O. Gluzman, P. O. Kasyanov and A. M. Tkachuk,
Long-Time Behavior of State Functions for Budyko Models, Continuous and distributed systems Ⅲ Series studies in systems. Decis. Control, 69 (2016), 351-359.
doi: 10.1007/978-3-319-40673-2_18. |
[27] |
P. Kalita and G. Lukaszewicz,
Global attractors for multivalued semiflows with weak continuity properties, Nonlinear Analysis: Theory, Methods & Applications, 101 (2014), 124-143.
doi: 10.1016/j.na.2014.01.026. |
[28] |
P. Kalita and G. Lukaszewicz,
Attractors for Navier-Stokes flows with multivalued and nonmonotone subdifferential boundary conditions, Nonlinear Analysis: Real World Applications, 19 (2014), 75-88.
doi: 10.1016/j.nonrwa.2014.03.002. |
[29] |
O. V. Kapustyan, P. O. Kasyanov, J. Valero and M. Z. Zgurovsky,
Sructure of uniform global attractor for general non-autonomous reaction-diffusion system, Continuous and Distributed Systems: Theory and Applications, Solid Mechanics and Its Applications, 211 (2014), 163-180.
doi: 10.1007/978-3-319-03146-0_12. |
[30] |
O. V. Kapustyan, P. O. Kasyanov and J. Valero,
Regular solutions and global attractors for reaction-diffusion systems without uniqueness, Communications on Pure and Applied Analysis, 13 (2014), 1891-1906.
doi: 10.3934/cpaa.2014.13.1891. |
[31] |
O. V. Kapustyan, P. O. Kasyanov and J. Valero,
Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term, DCDS-B, 34 (2014), 4155-4182.
doi: 10.3934/dcds.2014.34.4155. |
[32] |
O. V. Kapustyan and D. V. Shkundin,
Global attractor of one nonlinear parabolic equation, Ukrainian Mathematical Journal, 55 (2003), 535-547.
doi: 10.1023/B:UKMA.0000010155.48722.f2. |
[33] |
P. O. Kasyanov, L. Toscano and N. V. Zadoianchuk,
Regularity of weak solutions and their attractors for a parabolic feedback control problem, Set-Valued and Variational Analysis, 21 (2013), 271-282.
doi: 10.1007/s11228-013-0233-8. |
[34] |
P. O. Kasyanov,
Multivalued dynamics of solutions of an autonomous differential-operator inclusion with pseudomonotone nonlinearity, Cybernetics and Systems Analysis, 47 (2011), 800-811.
doi: 10.1007/s10559-011-9359-6. |
[35] |
P. O. Kasyanov,
Multivalued dynamics of solutions of autonomous operator differential equations with pseudomonotone nonlinearity, Mathematical Notes, 92 (2012), 205-218.
doi: 10.1134/S0001434612070231. |
[36] |
P. O. Kasyanov, L. Toscano and N. V. Zadoianchuk, Long-time behaviour of solutions for autonomous evolution hemivariational inequality with multidimensional reaction-displacement law Abstract and Applied Analysis (2012), Art. ID 450984, 21 pp. Google Scholar |
[37] |
V.S. Melnik and J. Valero,
On attractors of multivalued semiflows and differential inclusions, Set Valued Anal., 6 (1998), 83-111.
doi: 10.1023/A:1008608431399. |
[38] |
S. Migórski,
On the existence of solutions for parabolic hemivariational inequalities, Journal of Computational and Applied Mathematics, 129 (2001), 77-87.
doi: 10.1016/S0377-0427(00)00543-4. |
[39] |
S. Migórski and A. Ochal,
Optimal control of parabolic hemivariational inequalities, Journal of Global Optimization, 17 (2000), 285-300.
doi: 10.1023/A:1026555014562. |
[40] |
F. Morillas and J. Valero,
Attractors for reaction-diffusion equation in $R^n$ with continuous nonlinearity, Asymptotic Analysis, 44 (2005), 111-130.
|
[41] |
M. Otani and H. Fujita, On existence of strong solutions for $\frac{{du}}{{dt}}(t)+\partial\varphi^1(u(t))-\partial\varphi^2(u(t))\ni f(t)$, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, 24 (1977), 575-605. Google Scholar |
[42] |
P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions Birkhauser, Basel, 1985. Google Scholar |
[43] |
G. R. Sell and Yu. You, Dynamics of Evolutionary Equations Springer, New York, 2002. Google Scholar |
[44] |
W. D. Sellers,
A global climatic model based on the energy balance of the Earth-atmosphere system, J. Appl. Meteorol., 8 (1989), 392-400.
doi: 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2. |
[45] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Appl. Math. Sci. , Springer-Verlag, New York, 1988. Google Scholar |
[46] |
D. Terman,
A free boundary problem arising from a bistable reaction-diffusion equation, Siam J. Math. Anal., 14 (1983), 1107-1129.
doi: 10.1137/0514086. |
[47] |
D. Terman,
A free boundary arising from a model for nerve conduction, J. Diff. Eqs., 58 (1985), 345-363.
doi: 10.1016/0022-0396(85)90004-X. |
[48] |
J. Valero,
Attractors of parabolic equations without uniqueness, Journal of Dynamics and Differential Equations, 13 (2001), 711-744.
doi: 10.1023/A:1016642525800. |
[49] |
J. Valero and A. V. Kapustyan,
On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems, J Math Anal Appl., 323 (2006), 614-633.
doi: 10.1016/j.jmaa.2005.10.042. |
[50] |
M. I. Vishik, S. V. Zelik and V. V. Chepyzhov,
Strong trajectory attractor for a dissipative reaction-diffusion system, Doklady Mathematics, 82 (2010), 869-873.
doi: 10.1134/S1064562410060086. |
[51] |
N. V. Zadoianchuk and P. O. Kasyanov,
Dynamics of solutions of a class of second-order autonomous evolution inclusions, Cybernetics and Systems Analysis, 48 (2012), 414-428.
doi: 10.1007/s10559-012-9421-z. |
[52] |
M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero and N. V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing III Springer, Berlin, 2012. Google Scholar |
[53] |
M. Z. Zgurovsky and P. O. Kasyanov,
Multivalued dynamics of solutions for autonomous operator differential equations in strongest topologies, Continuous and Distributed Systems. Theory and Applications. Solid Mechanics and its Applications, 211 (2014), 149-162.
doi: 10.1007/978-3-319-03146-0_11. |
[54] |
M. Z. Zgurovsky, P. O. Kasyanov and N. V. Zadoianchuk,
Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem, Applied Mathematics Letters, 25 (2012), 1569-1574.
doi: 10.1016/j.aml.2012.01.016. |
show all references
References:
[1] |
J. M. Arrieta, A. Rodrígues-Bernal and J. Valero,
Dynamics of a reaction-diffusion equation with discontinuous nonlinearity, International Journal of Bifurcation and Chaos, 16 (2006), 2695-2984.
doi: 10.1142/S0218127406016586. |
[2] |
T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampére Equations, Springer, Berlin, 1980. Google Scholar |
[3] |
F. Balibrea, T. Caraballo, P. E. Kloeden and J. Valero,
Recent developments in dynamical systems: Three perspectives, International Journal of Bifurcation and Chaos, 20 (2010), 2591-2636.
doi: 10.1142/S0218127410027246. |
[4] |
J. M. Ball, Continuity properties and global attractors of generalized semiflows and the NavierStokes equations. Nonlinear Science, 7 (1997), 475-502 Erratum, ibid 8: 233,1998. Corrected version appears in Mechanics: from Theory to Computation. Springer Verlag, (2000), 447-474. Google Scholar |
[5] |
J. M. Ball,
Global attractors for damped semilinear wave equations, DCDS, 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31. |
[6] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucuresti, 1976. Google Scholar |
[7] |
M. I. Budyko,
The effects of solar radiation variations, on the climate of the Earth, Tellus, 21 (1969), 611-619.
doi: 10.3402/tellusa.v21i5.10109. |
[8] |
V. V. Chepyzhov and M. I. Vishik,
Trajectory and global attractors for 3D Navier-Stokes system, Mathematical Notes, 71 (2002), 177-193.
doi: 10.1023/A:1014190629738. |
[9] |
V. V. Chepyzhov and M. I. Vishik,
Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time, Discrete and Continuous Dynamical Systems, 27 (2010), 1498-1509.
doi: 10.3934/dcds.2010.27.1493. |
[10] |
V. V. Chepyzhov, M. Conti and V. Pata,
A minimal approach to the theory of global attractors, Discrete and Continuous Dynamical Systems, 32 (2012), 2079-2088.
doi: 10.3934/dcds.2012.32.2079. |
[11] |
F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, Inc. , New York, 1983. Google Scholar |
[12] |
H. Díaz and J. Díaz,
On a stochastic parabolic PDE arising in climatology, Rev. R. Acad. Cien. Serie A Mat., 96 (2002), 123-128.
|
[13] |
J. Díaz, J. Hernández and L. Tello,
On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology, J. Math. Anal. Appl., 216 (1997), 593-613.
doi: 10.1006/jmaa.1997.5691. |
[14] |
J. Díaz, J. Hernández and L. Tello,
Some results about multiplicity and bifurcation of stationary solutions of a reaction diffusion climatological model, Rev. R. Acad. Cien. Serie A. Mat., 96 (2002), 357-366.
|
[15] |
J. Díaz and L. Tello,
Infinitely many stationary solutions for a simple climate model via a shooting method, Math. Meth. Appl. Sci., 25 (2002), 327-334.
doi: 10.1002/mma.289. |
[16] |
M. Efendiev, A. Miranville and S. Zelik,
Exponential attractors for a nonlinear reaction-diffusion system in $R^3$, Comptes Rendus de l'Academie des Sciences-Series I -Mathematics, 330 (2000), 713-718.
doi: 10.1016/S0764-4442(00)00259-7. |
[17] |
E. Feireisl and J. Norbury,
Some existence and nonuniqueness theorems for solutions of parabolic equations with discontinuous nonlinearities, Proc. Roy. Soc. Edinburgh A., 119 (1991), 1-17.
doi: 10.1017/S0308210500028262. |
[18] |
H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen Akademie-Verlag, Berlin, 1975. Google Scholar |
[19] |
M. O. Gluzman, N. V. Gorban and P. O. Kasyanov, Lyapunov type functions for classes of autonomous parabolic feedback control problems and applications, Applied Mathematics Letters, 39 (2015), 19-21. Google Scholar |
[20] |
M. O. Gluzman, N. V. Gorban and P. O. Kasyanov,
Lyapunov functions for differential inclusions and applications in physics, biology, and climatology, Continuous and distributed systems Ⅱ. Theory and applications, Series studies in systems. Decis. Control, 30 (2015), 233-243.
doi: 10.1007/978-3-319-19075-4_14. |
[21] |
M. O. Gluzman, N. V. Gorban and P. O. Kasyanov,
Lyapunov functions for weak solutions of reaction-diffusion equations with discontinuous interaction functions and its applications, Nonautonomous Dyn. Syst., 2 (2015), 1-11.
doi: 10.1515/msds-2015-0001. |
[22] |
G. R. Goldstein and A. Miranville,
A Cahn-Hilliard-Gurtin model with dynamic boundary conditions, Discrete & Continuous Dynamical Systems -Series S, 6 (2013), 387-400.
doi: 10.3934/dcdss.2013.6.387. |
[23] |
N. V. Gorban, O. V. Kapustyan and P. O. Kasyanov,
Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Caratheodory's nonlinearity, Nonlinear Analysis, Theory, Methods and Applications, 98 (2014), 13-26.
doi: 10.1016/j.na.2013.12.004. |
[24] |
N. V. Gorban and P. O. Kasyanov,
On regularity of all weak solutions and their attractors for reaction-diffusion inclusion in unbounded domain, Continuous and Distributed Systems. Theory and Applications, Solid Mechanics and its Applications, 211 (2013), 205-220.
doi: 10.1007/978-3-319-03146-0_15. |
[25] |
N. V. Gorban, O. V. Kapustyan, P. O. Kasyanov and L. S. Paliichuk,
On global attractors for autonomous damped wave equation with discontinuous nonlinearity, Continuous and Distributed Systems. Theory and Applications, Solid Mechanics and its Applications, 211 (2014), 221-237.
doi: 10.1007/978-3-319-03146-0_16. |
[26] |
N. V. Gorban, M. O. Gluzman, P. O. Kasyanov and A. M. Tkachuk,
Long-Time Behavior of State Functions for Budyko Models, Continuous and distributed systems Ⅲ Series studies in systems. Decis. Control, 69 (2016), 351-359.
doi: 10.1007/978-3-319-40673-2_18. |
[27] |
P. Kalita and G. Lukaszewicz,
Global attractors for multivalued semiflows with weak continuity properties, Nonlinear Analysis: Theory, Methods & Applications, 101 (2014), 124-143.
doi: 10.1016/j.na.2014.01.026. |
[28] |
P. Kalita and G. Lukaszewicz,
Attractors for Navier-Stokes flows with multivalued and nonmonotone subdifferential boundary conditions, Nonlinear Analysis: Real World Applications, 19 (2014), 75-88.
doi: 10.1016/j.nonrwa.2014.03.002. |
[29] |
O. V. Kapustyan, P. O. Kasyanov, J. Valero and M. Z. Zgurovsky,
Sructure of uniform global attractor for general non-autonomous reaction-diffusion system, Continuous and Distributed Systems: Theory and Applications, Solid Mechanics and Its Applications, 211 (2014), 163-180.
doi: 10.1007/978-3-319-03146-0_12. |
[30] |
O. V. Kapustyan, P. O. Kasyanov and J. Valero,
Regular solutions and global attractors for reaction-diffusion systems without uniqueness, Communications on Pure and Applied Analysis, 13 (2014), 1891-1906.
doi: 10.3934/cpaa.2014.13.1891. |
[31] |
O. V. Kapustyan, P. O. Kasyanov and J. Valero,
Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term, DCDS-B, 34 (2014), 4155-4182.
doi: 10.3934/dcds.2014.34.4155. |
[32] |
O. V. Kapustyan and D. V. Shkundin,
Global attractor of one nonlinear parabolic equation, Ukrainian Mathematical Journal, 55 (2003), 535-547.
doi: 10.1023/B:UKMA.0000010155.48722.f2. |
[33] |
P. O. Kasyanov, L. Toscano and N. V. Zadoianchuk,
Regularity of weak solutions and their attractors for a parabolic feedback control problem, Set-Valued and Variational Analysis, 21 (2013), 271-282.
doi: 10.1007/s11228-013-0233-8. |
[34] |
P. O. Kasyanov,
Multivalued dynamics of solutions of an autonomous differential-operator inclusion with pseudomonotone nonlinearity, Cybernetics and Systems Analysis, 47 (2011), 800-811.
doi: 10.1007/s10559-011-9359-6. |
[35] |
P. O. Kasyanov,
Multivalued dynamics of solutions of autonomous operator differential equations with pseudomonotone nonlinearity, Mathematical Notes, 92 (2012), 205-218.
doi: 10.1134/S0001434612070231. |
[36] |
P. O. Kasyanov, L. Toscano and N. V. Zadoianchuk, Long-time behaviour of solutions for autonomous evolution hemivariational inequality with multidimensional reaction-displacement law Abstract and Applied Analysis (2012), Art. ID 450984, 21 pp. Google Scholar |
[37] |
V.S. Melnik and J. Valero,
On attractors of multivalued semiflows and differential inclusions, Set Valued Anal., 6 (1998), 83-111.
doi: 10.1023/A:1008608431399. |
[38] |
S. Migórski,
On the existence of solutions for parabolic hemivariational inequalities, Journal of Computational and Applied Mathematics, 129 (2001), 77-87.
doi: 10.1016/S0377-0427(00)00543-4. |
[39] |
S. Migórski and A. Ochal,
Optimal control of parabolic hemivariational inequalities, Journal of Global Optimization, 17 (2000), 285-300.
doi: 10.1023/A:1026555014562. |
[40] |
F. Morillas and J. Valero,
Attractors for reaction-diffusion equation in $R^n$ with continuous nonlinearity, Asymptotic Analysis, 44 (2005), 111-130.
|
[41] |
M. Otani and H. Fujita, On existence of strong solutions for $\frac{{du}}{{dt}}(t)+\partial\varphi^1(u(t))-\partial\varphi^2(u(t))\ni f(t)$, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, 24 (1977), 575-605. Google Scholar |
[42] |
P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions Birkhauser, Basel, 1985. Google Scholar |
[43] |
G. R. Sell and Yu. You, Dynamics of Evolutionary Equations Springer, New York, 2002. Google Scholar |
[44] |
W. D. Sellers,
A global climatic model based on the energy balance of the Earth-atmosphere system, J. Appl. Meteorol., 8 (1989), 392-400.
doi: 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2. |
[45] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Appl. Math. Sci. , Springer-Verlag, New York, 1988. Google Scholar |
[46] |
D. Terman,
A free boundary problem arising from a bistable reaction-diffusion equation, Siam J. Math. Anal., 14 (1983), 1107-1129.
doi: 10.1137/0514086. |
[47] |
D. Terman,
A free boundary arising from a model for nerve conduction, J. Diff. Eqs., 58 (1985), 345-363.
doi: 10.1016/0022-0396(85)90004-X. |
[48] |
J. Valero,
Attractors of parabolic equations without uniqueness, Journal of Dynamics and Differential Equations, 13 (2001), 711-744.
doi: 10.1023/A:1016642525800. |
[49] |
J. Valero and A. V. Kapustyan,
On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems, J Math Anal Appl., 323 (2006), 614-633.
doi: 10.1016/j.jmaa.2005.10.042. |
[50] |
M. I. Vishik, S. V. Zelik and V. V. Chepyzhov,
Strong trajectory attractor for a dissipative reaction-diffusion system, Doklady Mathematics, 82 (2010), 869-873.
doi: 10.1134/S1064562410060086. |
[51] |
N. V. Zadoianchuk and P. O. Kasyanov,
Dynamics of solutions of a class of second-order autonomous evolution inclusions, Cybernetics and Systems Analysis, 48 (2012), 414-428.
doi: 10.1007/s10559-012-9421-z. |
[52] |
M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero and N. V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing III Springer, Berlin, 2012. Google Scholar |
[53] |
M. Z. Zgurovsky and P. O. Kasyanov,
Multivalued dynamics of solutions for autonomous operator differential equations in strongest topologies, Continuous and Distributed Systems. Theory and Applications. Solid Mechanics and its Applications, 211 (2014), 149-162.
doi: 10.1007/978-3-319-03146-0_11. |
[54] |
M. Z. Zgurovsky, P. O. Kasyanov and N. V. Zadoianchuk,
Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem, Applied Mathematics Letters, 25 (2012), 1569-1574.
doi: 10.1016/j.aml.2012.01.016. |
[1] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[2] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[3] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283 |
[4] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[5] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[6] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[7] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[8] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[9] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[10] |
Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021036 |
[11] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[12] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[13] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[14] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[15] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[16] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[17] |
Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161 |
[18] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[19] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[20] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]