July  2017, 22(5): 1965-1975. doi: 10.3934/dcdsb.2017115

Topological stability in set-valued dynamics

1. 

Instituto de Matemàtica y Ciencias Afines (IMCA), Universidad Nacional de Ingeniera Calle Los Biòlogos 245, 15012 Lima, Perù

2. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530,21945-970 Rio de Janeiro, Brazil

3. 

Institut de Mathématiques Université de Bordeaux Ⅰ, 33405, Talence, France

* Corresponding author: Carlos Arnoldo Morales Rojas

Received  November 2016 Revised  January 2017 Published  March 2017

Fund Project: Work partially supported by CNPq from Brazil and MATHAMSUD 15 MATH05-ERGOPTIM, Ergodic Optimization of Lyapunov Exponents.

We propose a definition of topological stability for set-valued maps. We prove that a single-valued map which is topologically stable in the set-valued sense is topologically stable in the classical sense [14]. Next, we prove that every upper semicontinuous closed-valued map which is positively expansive [15] and satisfies the positive pseudo-orbit tracing property [9] is topologically stable. Finally, we prove that every topologically stable set-valued map of a compact metric space has the positive pseudo-orbit tracing property and the periodic points are dense in the nonwandering set. These results extend the classical single-valued ones in [1] and [14].

Citation: Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115
References:
[1]

N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems. Recent Advances, North-Holland Mathematical Library, 52. North-Holland Publishing Co. , Amsterdam, 1994. Google Scholar

[2]

J. -P. Aubin and H. Frankowska, Set-valued Analysis, Reprint of the 1990 edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc. , Boston, MA, 2009. Google Scholar

[3]

R. Bowen, ω-limit sets for axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.  doi: 10.1016/0022-0396(75)90065-0.  Google Scholar

[4]

D. Carrasco-Olivera, A. R. Metzger and C. A. Morales, Logarithmic expansion, entropy and dimension for set-valued maps, Preprint, (2016), to appear. Google Scholar

[5]

D. Carrasco-OliveraR. Metzger Alvan and C. A. Morales, Topological entropy for set-valued maps, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3461-3474.  doi: 10.3934/dcdsb.2015.20.3461.  Google Scholar

[6]

W. Cordeiro and M. J. Pacifico, Continuum-wise expansiveness and specification for set-valued functions and topological entropy, Proc. Amer. Math. Soc., 144 (2016), 4261-4271.  doi: 10.1090/proc/13168.  Google Scholar

[7]

M. Eisenberg, Expansive transformation semigroups of endomorphisms, Fund. Math., 59 (1966), 313-321.   Google Scholar

[8]

J. P. Kelly and T. Tennant, Topological entropy for set-valued functions, arXiv: 1509.08413. Google Scholar

[9]

S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case, Topol. Methods Nonlinear Anal., 32 (2008), 139-149.   Google Scholar

[10]

S. Y. Pilyugin, Shadowing in Dynamical Systems Lecture Notes in Mathematics, 1706. Springer-Verlag, Berlin, 1999. Google Scholar

[11]

B. E. Raines and T. Tennant, The specification property on a set-valued map and its inverse limit, arXiv: 1509.08415. Google Scholar

[12]

W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc., 1 (1950), 769-774.  doi: 10.1090/S0002-9939-1950-0038022-3.  Google Scholar

[13]

P. Walters, On the pseudo-orbit tracing property and its relationship to stability. The structure of attractors in dynamical systems (Proc. Conf. , North Dakota State Univ. , Fargo, N. D. , 1977), Lecture Notes in Math. , Springer, Berlin, 668 (1978), 231-244. Google Scholar

[14]

P. Walters, Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78.  doi: 10.1016/0040-9383(70)90051-0.  Google Scholar

[15]

R. K. Williams, A note on expansive mappings, Proc. Amer. Math. Soc., 22 (1969), 145-147.  doi: 10.1090/S0002-9939-1969-0242143-4.  Google Scholar

show all references

References:
[1]

N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems. Recent Advances, North-Holland Mathematical Library, 52. North-Holland Publishing Co. , Amsterdam, 1994. Google Scholar

[2]

J. -P. Aubin and H. Frankowska, Set-valued Analysis, Reprint of the 1990 edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc. , Boston, MA, 2009. Google Scholar

[3]

R. Bowen, ω-limit sets for axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.  doi: 10.1016/0022-0396(75)90065-0.  Google Scholar

[4]

D. Carrasco-Olivera, A. R. Metzger and C. A. Morales, Logarithmic expansion, entropy and dimension for set-valued maps, Preprint, (2016), to appear. Google Scholar

[5]

D. Carrasco-OliveraR. Metzger Alvan and C. A. Morales, Topological entropy for set-valued maps, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3461-3474.  doi: 10.3934/dcdsb.2015.20.3461.  Google Scholar

[6]

W. Cordeiro and M. J. Pacifico, Continuum-wise expansiveness and specification for set-valued functions and topological entropy, Proc. Amer. Math. Soc., 144 (2016), 4261-4271.  doi: 10.1090/proc/13168.  Google Scholar

[7]

M. Eisenberg, Expansive transformation semigroups of endomorphisms, Fund. Math., 59 (1966), 313-321.   Google Scholar

[8]

J. P. Kelly and T. Tennant, Topological entropy for set-valued functions, arXiv: 1509.08413. Google Scholar

[9]

S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case, Topol. Methods Nonlinear Anal., 32 (2008), 139-149.   Google Scholar

[10]

S. Y. Pilyugin, Shadowing in Dynamical Systems Lecture Notes in Mathematics, 1706. Springer-Verlag, Berlin, 1999. Google Scholar

[11]

B. E. Raines and T. Tennant, The specification property on a set-valued map and its inverse limit, arXiv: 1509.08415. Google Scholar

[12]

W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc., 1 (1950), 769-774.  doi: 10.1090/S0002-9939-1950-0038022-3.  Google Scholar

[13]

P. Walters, On the pseudo-orbit tracing property and its relationship to stability. The structure of attractors in dynamical systems (Proc. Conf. , North Dakota State Univ. , Fargo, N. D. , 1977), Lecture Notes in Math. , Springer, Berlin, 668 (1978), 231-244. Google Scholar

[14]

P. Walters, Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78.  doi: 10.1016/0040-9383(70)90051-0.  Google Scholar

[15]

R. K. Williams, A note on expansive mappings, Proc. Amer. Math. Soc., 22 (1969), 145-147.  doi: 10.1090/S0002-9939-1969-0242143-4.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[3]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[4]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[5]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[6]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[7]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[8]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[9]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[10]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[11]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[16]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[17]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (79)
  • HTML views (53)
  • Cited by (1)

[Back to Top]