-
Previous Article
On practical stability of differential inclusions using Lyapunov functions
- DCDS-B Home
- This Issue
-
Next Article
Pullback attractors of reaction-diffusion inclusions with space-dependent delay
Topological stability in set-valued dynamics
1. | Instituto de Matemàtica y Ciencias Afines (IMCA), Universidad Nacional de Ingeniera Calle Los Biòlogos 245, 15012 Lima, Perù |
2. | Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530,21945-970 Rio de Janeiro, Brazil |
3. | Institut de Mathématiques Université de Bordeaux Ⅰ, 33405, Talence, France |
We propose a definition of topological stability for set-valued maps. We prove that a single-valued map which is topologically stable in the set-valued sense is topologically stable in the classical sense [
References:
[1] |
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems. Recent Advances, North-Holland Mathematical Library, 52. North-Holland Publishing Co. , Amsterdam, 1994. Google Scholar |
[2] |
J. -P. Aubin and H. Frankowska, Set-valued Analysis, Reprint of the 1990 edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc. , Boston, MA, 2009. Google Scholar |
[3] |
R. Bowen,
ω-limit sets for axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.
doi: 10.1016/0022-0396(75)90065-0. |
[4] |
D. Carrasco-Olivera, A. R. Metzger and C. A. Morales, Logarithmic expansion, entropy and dimension for set-valued maps, Preprint, (2016), to appear. Google Scholar |
[5] |
D. Carrasco-Olivera, R. Metzger Alvan and C. A. Morales,
Topological entropy for set-valued maps, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3461-3474.
doi: 10.3934/dcdsb.2015.20.3461. |
[6] |
W. Cordeiro and M. J. Pacifico,
Continuum-wise expansiveness and specification for set-valued functions and topological entropy, Proc. Amer. Math. Soc., 144 (2016), 4261-4271.
doi: 10.1090/proc/13168. |
[7] |
M. Eisenberg,
Expansive transformation semigroups of endomorphisms, Fund. Math., 59 (1966), 313-321.
|
[8] |
J. P. Kelly and T. Tennant, Topological entropy for set-valued functions, arXiv: 1509.08413. Google Scholar |
[9] |
S. Y. Pilyugin and J. Rieger,
Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case, Topol. Methods Nonlinear Anal., 32 (2008), 139-149.
|
[10] |
S. Y. Pilyugin, Shadowing in Dynamical Systems Lecture Notes in Mathematics, 1706. Springer-Verlag, Berlin, 1999. Google Scholar |
[11] |
B. E. Raines and T. Tennant, The specification property on a set-valued map and its inverse limit, arXiv: 1509.08415. Google Scholar |
[12] |
W. R. Utz,
Unstable homeomorphisms, Proc. Amer. Math. Soc., 1 (1950), 769-774.
doi: 10.1090/S0002-9939-1950-0038022-3. |
[13] |
P. Walters, On the pseudo-orbit tracing property and its relationship to stability. The structure of attractors in dynamical systems (Proc. Conf. , North Dakota State Univ. , Fargo, N. D. , 1977), Lecture Notes in Math. , Springer, Berlin, 668 (1978), 231-244. Google Scholar |
[14] |
P. Walters,
Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78.
doi: 10.1016/0040-9383(70)90051-0. |
[15] |
R. K. Williams,
A note on expansive mappings, Proc. Amer. Math. Soc., 22 (1969), 145-147.
doi: 10.1090/S0002-9939-1969-0242143-4. |
show all references
References:
[1] |
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems. Recent Advances, North-Holland Mathematical Library, 52. North-Holland Publishing Co. , Amsterdam, 1994. Google Scholar |
[2] |
J. -P. Aubin and H. Frankowska, Set-valued Analysis, Reprint of the 1990 edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc. , Boston, MA, 2009. Google Scholar |
[3] |
R. Bowen,
ω-limit sets for axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.
doi: 10.1016/0022-0396(75)90065-0. |
[4] |
D. Carrasco-Olivera, A. R. Metzger and C. A. Morales, Logarithmic expansion, entropy and dimension for set-valued maps, Preprint, (2016), to appear. Google Scholar |
[5] |
D. Carrasco-Olivera, R. Metzger Alvan and C. A. Morales,
Topological entropy for set-valued maps, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3461-3474.
doi: 10.3934/dcdsb.2015.20.3461. |
[6] |
W. Cordeiro and M. J. Pacifico,
Continuum-wise expansiveness and specification for set-valued functions and topological entropy, Proc. Amer. Math. Soc., 144 (2016), 4261-4271.
doi: 10.1090/proc/13168. |
[7] |
M. Eisenberg,
Expansive transformation semigroups of endomorphisms, Fund. Math., 59 (1966), 313-321.
|
[8] |
J. P. Kelly and T. Tennant, Topological entropy for set-valued functions, arXiv: 1509.08413. Google Scholar |
[9] |
S. Y. Pilyugin and J. Rieger,
Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case, Topol. Methods Nonlinear Anal., 32 (2008), 139-149.
|
[10] |
S. Y. Pilyugin, Shadowing in Dynamical Systems Lecture Notes in Mathematics, 1706. Springer-Verlag, Berlin, 1999. Google Scholar |
[11] |
B. E. Raines and T. Tennant, The specification property on a set-valued map and its inverse limit, arXiv: 1509.08415. Google Scholar |
[12] |
W. R. Utz,
Unstable homeomorphisms, Proc. Amer. Math. Soc., 1 (1950), 769-774.
doi: 10.1090/S0002-9939-1950-0038022-3. |
[13] |
P. Walters, On the pseudo-orbit tracing property and its relationship to stability. The structure of attractors in dynamical systems (Proc. Conf. , North Dakota State Univ. , Fargo, N. D. , 1977), Lecture Notes in Math. , Springer, Berlin, 668 (1978), 231-244. Google Scholar |
[14] |
P. Walters,
Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78.
doi: 10.1016/0040-9383(70)90051-0. |
[15] |
R. K. Williams,
A note on expansive mappings, Proc. Amer. Math. Soc., 22 (1969), 145-147.
doi: 10.1090/S0002-9939-1969-0242143-4. |
[1] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[2] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[3] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[4] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[5] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[6] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[7] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[8] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278 |
[9] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[10] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021014 |
[11] |
Sergei Avdonin, Yuanyuan Zhao. Leaf Peeling method for the wave equation on metric tree graphs. Inverse Problems & Imaging, 2021, 15 (2) : 185-199. doi: 10.3934/ipi.2020060 |
[12] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[13] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[14] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[15] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[16] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[17] |
Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071 |
[18] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[19] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[20] |
Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]