July  2017, 22(5): 1977-1986. doi: 10.3934/dcdsb.2017116

On practical stability of differential inclusions using Lyapunov functions

Taras Shevchenko National University of Kyiv, Department of Computer Science and Cybernetics, Volodymyrska Str. 60,01033, Kyiv, Ukraine

Received  January 2016 Revised  February 2016 Published  March 2017

In this paper we consider the problem of practical stability for differential inclusions. We prove the necessary and sufficient conditions using Lyapunov functions. Then we solve the practical stability problem of linear differential inclusion with ellipsoidal righthand part and ellipsoidal initial data set. In the last section we apply the main result of this paper to the problem of practical stabilization.

Citation: Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116
References:
[1]

D. AngeliB. IngallsE. D. Sontag and Y. Wang, Uniform global asymptotic stability of differential inclusions, Journal of Dynamical and Control Systems, 10 (2004), 391-412.  doi: 10.1023/B:JODS.0000034437.54937.7f.  Google Scholar

[2]

E. Arzarello and A. Bacciotti, On stability and boundedness for lipschitzian differential inclusions: The converse of Lyapunov's theorems, Set-Valued Analysis, 5 (1997), 377-390.  doi: 10.1023/A:1008603707291.  Google Scholar

[3]

J. P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory Berlin-Heidelberg-New York-Tokyo, Springer-Verlag, 1984. Google Scholar

[4]

J. P. Aubin and H. Frankowska, Set-valued Analysis Boston, Birkhäuser, 2009. Google Scholar

[5]

A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory Berlin -Heidelberg -New York, Springer, 2005. Google Scholar

[6]

O. M. Bashnyakov, F. G. Garashchenko and V. V. Pichkur, Practical Stability, Estimations and Optimization, Kyiv : Taras Shevchenko National University of Kyiv, 2008. Google Scholar

[7]

A. N. BashnyakovV. V. Pichkur and I. V. Hitko, On Maximal Initial Data Set in Problems of Practical Stability of Discrete System, J. Automat. Inf. Scien., 43 (2011), 1-8.  doi: 10.1615/JAutomatInfScien.v43.i3.10.  Google Scholar

[8]

B. N. Bublik, F. G. Garashchenko and N. F. Kirichenko, Structural -Parametric Optimization and Stability of Bunch Dynamics, Kyiv: Naukova dumka, 1985. Google Scholar

[9]

N. G. Chetaev, On certain questions related to the problem of the stability of unsteady motion, J. Appl. Math. Mech., 24 (1960), 6-19.  doi: 10.1016/0021-8928(60)90135-0.  Google Scholar

[10]

K. Deimling, Multivalued Differential Equations Berlin-New York: Walter de Gruyter, 1992. Google Scholar

[11]

R. Gama and G. Smirnov, Stability and optimality of solutions to differential inclusions via averaging method, Set-Valued and Variational Analysis, 22 (2014), 349-374.  doi: 10.1007/s11228-013-0261-4.  Google Scholar

[12]

F. G. Garashchenko and V. V. Pichkur, Garashchenko and V. V. Pichkur, Properties of optimal sets of practical stability of differential inclusions. Part Ⅰ. Part Ⅱ, (Russian), Problemy Upravlen. Inform., (2006), 163-170.   Google Scholar

[13]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides Dordrecht-Boston-London: Kluwer Academic, 1988. Google Scholar

[14]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides and Differential Inclusions, in Nonlinear Analysis and Nonlinear Differential Equations (eds. V. A. Trenogin and A. F. Filippov), Moscow: FIZMATLIT, (2003), 265-288. Google Scholar

[15]

N. F. Kirichenko, Introduction to the Stability Theory, Kyiv: Vyshcha Shkola, 1978. Google Scholar

[16]

V. Lakshmikantham, S. Leela and A. A. Martynyuk, Practical Stability of Nonlinear Systems Singapore : World Scientific, 1990. Google Scholar

[17] J. Lasalle and S. Lefshetz, Stability by Lyapunov Direct Method and Application, Academic Press, New York:, 1961.   Google Scholar
[18]

A. Michel, K. Wang and B. Hu, Qualitative Theory of Dynamical Systems. The Role of Stability-Preserving Mappings, Marcel Dekker, Inc. , New York, 1995. Google Scholar

[19]

V. V. Pichkur and M. S. Sasonkina, Maximum set of initial conditions for the problem of weak practical stability of a discrete inclusion, J. Math. Sci., 194 (2013), 414-425.  doi: 10.1007/s10958-013-1537-9.  Google Scholar

[20]

G. Smirnov, Introduction to the Theory of Differential Inclusions, American Mathematical Society, 2002. Google Scholar

[21]

V. Veliov, Stability-like properties of differential inclusions, Set-Valued Analysis, 5 (1997), 73-88.  doi: 10.1023/A:1008683223676.  Google Scholar

show all references

References:
[1]

D. AngeliB. IngallsE. D. Sontag and Y. Wang, Uniform global asymptotic stability of differential inclusions, Journal of Dynamical and Control Systems, 10 (2004), 391-412.  doi: 10.1023/B:JODS.0000034437.54937.7f.  Google Scholar

[2]

E. Arzarello and A. Bacciotti, On stability and boundedness for lipschitzian differential inclusions: The converse of Lyapunov's theorems, Set-Valued Analysis, 5 (1997), 377-390.  doi: 10.1023/A:1008603707291.  Google Scholar

[3]

J. P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory Berlin-Heidelberg-New York-Tokyo, Springer-Verlag, 1984. Google Scholar

[4]

J. P. Aubin and H. Frankowska, Set-valued Analysis Boston, Birkhäuser, 2009. Google Scholar

[5]

A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory Berlin -Heidelberg -New York, Springer, 2005. Google Scholar

[6]

O. M. Bashnyakov, F. G. Garashchenko and V. V. Pichkur, Practical Stability, Estimations and Optimization, Kyiv : Taras Shevchenko National University of Kyiv, 2008. Google Scholar

[7]

A. N. BashnyakovV. V. Pichkur and I. V. Hitko, On Maximal Initial Data Set in Problems of Practical Stability of Discrete System, J. Automat. Inf. Scien., 43 (2011), 1-8.  doi: 10.1615/JAutomatInfScien.v43.i3.10.  Google Scholar

[8]

B. N. Bublik, F. G. Garashchenko and N. F. Kirichenko, Structural -Parametric Optimization and Stability of Bunch Dynamics, Kyiv: Naukova dumka, 1985. Google Scholar

[9]

N. G. Chetaev, On certain questions related to the problem of the stability of unsteady motion, J. Appl. Math. Mech., 24 (1960), 6-19.  doi: 10.1016/0021-8928(60)90135-0.  Google Scholar

[10]

K. Deimling, Multivalued Differential Equations Berlin-New York: Walter de Gruyter, 1992. Google Scholar

[11]

R. Gama and G. Smirnov, Stability and optimality of solutions to differential inclusions via averaging method, Set-Valued and Variational Analysis, 22 (2014), 349-374.  doi: 10.1007/s11228-013-0261-4.  Google Scholar

[12]

F. G. Garashchenko and V. V. Pichkur, Garashchenko and V. V. Pichkur, Properties of optimal sets of practical stability of differential inclusions. Part Ⅰ. Part Ⅱ, (Russian), Problemy Upravlen. Inform., (2006), 163-170.   Google Scholar

[13]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides Dordrecht-Boston-London: Kluwer Academic, 1988. Google Scholar

[14]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides and Differential Inclusions, in Nonlinear Analysis and Nonlinear Differential Equations (eds. V. A. Trenogin and A. F. Filippov), Moscow: FIZMATLIT, (2003), 265-288. Google Scholar

[15]

N. F. Kirichenko, Introduction to the Stability Theory, Kyiv: Vyshcha Shkola, 1978. Google Scholar

[16]

V. Lakshmikantham, S. Leela and A. A. Martynyuk, Practical Stability of Nonlinear Systems Singapore : World Scientific, 1990. Google Scholar

[17] J. Lasalle and S. Lefshetz, Stability by Lyapunov Direct Method and Application, Academic Press, New York:, 1961.   Google Scholar
[18]

A. Michel, K. Wang and B. Hu, Qualitative Theory of Dynamical Systems. The Role of Stability-Preserving Mappings, Marcel Dekker, Inc. , New York, 1995. Google Scholar

[19]

V. V. Pichkur and M. S. Sasonkina, Maximum set of initial conditions for the problem of weak practical stability of a discrete inclusion, J. Math. Sci., 194 (2013), 414-425.  doi: 10.1007/s10958-013-1537-9.  Google Scholar

[20]

G. Smirnov, Introduction to the Theory of Differential Inclusions, American Mathematical Society, 2002. Google Scholar

[21]

V. Veliov, Stability-like properties of differential inclusions, Set-Valued Analysis, 5 (1997), 73-88.  doi: 10.1023/A:1008683223676.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[3]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[10]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[14]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[15]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[16]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[17]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[18]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[19]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[20]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (62)
  • HTML views (43)
  • Cited by (1)

Other articles
by authors

[Back to Top]