July  2017, 22(5): 2011-2051. doi: 10.3934/dcdsb.2017119

Multivalued non-autonomous random dynamical systems for wave equations without uniqueness

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

Received  July 2015 Revised  April 2016 Published  March 2017

This paper deals with the multivalued non-autonomous random dynamical system generated by the non-autonomous stochastic wave equations on unbounded domains, which has a non-Lipschitz nonlinearity with critical exponent in the three dimensional case. We introduce the concept of weak upper semicontinuity of multivalued functions and use such continuity to prove the measurability of multivalued functions from a metric space to a separable Banach space. By this approach, we show the measurability of pullback attractors of the multivalued random dynamical system of the wave equations regardless of the completeness of the underlying probability space. The asymptotic compactness of solutions is proved by the method of energy equations, and the difficulty caused by the non-compactness of Sobolev embeddings on $\mathbb{R}^n$ is overcome by the uniform estimates on the tails of solutions.

Citation: Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119
References:
[1]

L. Arnold, Random Dynamical Systems Springer-Verlag, 1998. Google Scholar

[2]

J. M. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Communications in Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations North-Holland, Amsterdam, 1992. Google Scholar

[4]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynamical Systems, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[5]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[6]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[7]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Continuous Dynamical Systems, 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[8]

T. CaraballoJ. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Continuous Dynamical Systems B, 9 (2008), 525-539.  doi: 10.3934/dcdsb.2008.9.525.  Google Scholar

[9]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 10 (2003), 491-513.   Google Scholar

[10]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[11]

T. CaraballoM. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[12]

T. CaraballoJ. A. LangaV. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153-201.  doi: 10.1023/A:1022902802385.  Google Scholar

[13]

T. CaraballoJ. A. Langa and J. Valero, Global attractors for multivalued random dynamical systems generated by random differential inclusions with multiplicative noise, J. Math. Anal. Appl., 260 (2001), 602-622.  doi: 10.1006/jmaa.2001.7497.  Google Scholar

[14]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, Journal of Difference Equations and Applications, 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[15]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512.  doi: 10.1007/s10884-004-4289-x.  Google Scholar

[16]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dynamical Systems, 19 (2004), 127-144.  doi: 10.1080/1468936042000207792.  Google Scholar

[17]

I. Chueshow, Monotone Random Systems -Theory and Applications Lecture Notes in Mathematics 1779, Springer, Berlin, 2002. Google Scholar

[18]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[19]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[20]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Comm. Math. Sci., 1 (2003), 133-151.  doi: 10.4310/CMS.2003.v1.n1.a9.  Google Scholar

[21]

E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Analysis TMA, 23 (1994), 187-195.  doi: 10.1016/0362-546X(94)90041-8.  Google Scholar

[22]

E. Feireisl, Global attractors for semilinear damped wave equations with supercritical exponent, J. Differential Equations, 116 (1995), 431-447.  doi: 10.1006/jdeq.1995.1042.  Google Scholar

[23]

E. Feireisl and E. Zuazua, Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent, Communications in Partial Differential Equations, 18 (1993), 1539-1555.  doi: 10.1080/03605309308820985.  Google Scholar

[24]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[25]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differential Equations, 23 (2011), 671-681.  doi: 10.1007/s10884-011-9222-5.  Google Scholar

[26]

M. J. Garrido-AtienzaA. Ogrowsky and B. Schmalfuss, Random differential equations with random delays, Stoch. Dyn., 11 (2011), 369-388.  doi: 10.1142/S0219493711003358.  Google Scholar

[27]

M. J. Garrido-AtienzaB. Maslowski and B. Schmalfuss, Random attractors for stochastic equations driven by a fractional Brownian motion, International J. Bifurcation and Chaos, 20 (2010), 2761-2782.  doi: 10.1142/S0218127410027349.  Google Scholar

[28]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. Google Scholar

[29]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete and Continuous Dynamical Systems, 24 (2009), 855-882.  doi: 10.3934/dcds.2009.24.855.  Google Scholar

[30]

A. Kh. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719.  doi: 10.1016/j.jde.2006.06.001.  Google Scholar

[31]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. Royal Soc. London Serie A., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[32]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[33]

M. Prizzi and K. P. Rybakowski, Attractors for semilinear damped wave equations on arbitrary unbounded domains, Topol. Methods Nonlinear Anal., 31 (2008), 49-82.   Google Scholar

[34]

M. Prizzi and K. P. Rybakowski, Attractors for singularly perturbed damped wave equations on unbounded domains, Topol. Methods Nonlinear Anal., 32 (2008), 1-20.   Google Scholar

[35]

M. Prizzi, Regularity of invariant sets in semilinear damped wave equations, J. Differential Equations, 247 (2009), 3315-3337.  doi: 10.1016/j.jde.2009.08.011.  Google Scholar

[36]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185-192, Dresden, 1992. Google Scholar

[37]

R. Sell and Y. You, Dynamics of Evolutionary Equations Springer-Verlag, New York, 2002. Google Scholar

[38]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[39]

C. SunD. Cao and J. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[40]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equation, 227 (2006), 427-443.  doi: 10.1016/j.jde.2005.09.010.  Google Scholar

[41]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. Google Scholar

[42]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[43]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Transactions of American Mathematical Society, 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[44]

B. Wang, Random Attractors for the Stochastic Benjamin-Bona-Mahony Equation on Unbounded Domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[45]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[46]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems, 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[47]

Y. Wang and J. Wang, Pullback attractors for multivalued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.  doi: 10.1016/j.jde.2015.02.026.  Google Scholar

[48]

Z. WangS. Zhou and A. Gu, Random attractors for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Analysis, Real World Applications, 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems Springer-Verlag, 1998. Google Scholar

[2]

J. M. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Communications in Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations North-Holland, Amsterdam, 1992. Google Scholar

[4]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynamical Systems, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[5]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[6]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[7]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Continuous Dynamical Systems, 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[8]

T. CaraballoJ. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Continuous Dynamical Systems B, 9 (2008), 525-539.  doi: 10.3934/dcdsb.2008.9.525.  Google Scholar

[9]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 10 (2003), 491-513.   Google Scholar

[10]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[11]

T. CaraballoM. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[12]

T. CaraballoJ. A. LangaV. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153-201.  doi: 10.1023/A:1022902802385.  Google Scholar

[13]

T. CaraballoJ. A. Langa and J. Valero, Global attractors for multivalued random dynamical systems generated by random differential inclusions with multiplicative noise, J. Math. Anal. Appl., 260 (2001), 602-622.  doi: 10.1006/jmaa.2001.7497.  Google Scholar

[14]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, Journal of Difference Equations and Applications, 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[15]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512.  doi: 10.1007/s10884-004-4289-x.  Google Scholar

[16]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dynamical Systems, 19 (2004), 127-144.  doi: 10.1080/1468936042000207792.  Google Scholar

[17]

I. Chueshow, Monotone Random Systems -Theory and Applications Lecture Notes in Mathematics 1779, Springer, Berlin, 2002. Google Scholar

[18]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[19]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[20]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Comm. Math. Sci., 1 (2003), 133-151.  doi: 10.4310/CMS.2003.v1.n1.a9.  Google Scholar

[21]

E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Analysis TMA, 23 (1994), 187-195.  doi: 10.1016/0362-546X(94)90041-8.  Google Scholar

[22]

E. Feireisl, Global attractors for semilinear damped wave equations with supercritical exponent, J. Differential Equations, 116 (1995), 431-447.  doi: 10.1006/jdeq.1995.1042.  Google Scholar

[23]

E. Feireisl and E. Zuazua, Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent, Communications in Partial Differential Equations, 18 (1993), 1539-1555.  doi: 10.1080/03605309308820985.  Google Scholar

[24]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[25]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differential Equations, 23 (2011), 671-681.  doi: 10.1007/s10884-011-9222-5.  Google Scholar

[26]

M. J. Garrido-AtienzaA. Ogrowsky and B. Schmalfuss, Random differential equations with random delays, Stoch. Dyn., 11 (2011), 369-388.  doi: 10.1142/S0219493711003358.  Google Scholar

[27]

M. J. Garrido-AtienzaB. Maslowski and B. Schmalfuss, Random attractors for stochastic equations driven by a fractional Brownian motion, International J. Bifurcation and Chaos, 20 (2010), 2761-2782.  doi: 10.1142/S0218127410027349.  Google Scholar

[28]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. Google Scholar

[29]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete and Continuous Dynamical Systems, 24 (2009), 855-882.  doi: 10.3934/dcds.2009.24.855.  Google Scholar

[30]

A. Kh. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719.  doi: 10.1016/j.jde.2006.06.001.  Google Scholar

[31]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. Royal Soc. London Serie A., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[32]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[33]

M. Prizzi and K. P. Rybakowski, Attractors for semilinear damped wave equations on arbitrary unbounded domains, Topol. Methods Nonlinear Anal., 31 (2008), 49-82.   Google Scholar

[34]

M. Prizzi and K. P. Rybakowski, Attractors for singularly perturbed damped wave equations on unbounded domains, Topol. Methods Nonlinear Anal., 32 (2008), 1-20.   Google Scholar

[35]

M. Prizzi, Regularity of invariant sets in semilinear damped wave equations, J. Differential Equations, 247 (2009), 3315-3337.  doi: 10.1016/j.jde.2009.08.011.  Google Scholar

[36]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185-192, Dresden, 1992. Google Scholar

[37]

R. Sell and Y. You, Dynamics of Evolutionary Equations Springer-Verlag, New York, 2002. Google Scholar

[38]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[39]

C. SunD. Cao and J. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[40]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equation, 227 (2006), 427-443.  doi: 10.1016/j.jde.2005.09.010.  Google Scholar

[41]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. Google Scholar

[42]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[43]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Transactions of American Mathematical Society, 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[44]

B. Wang, Random Attractors for the Stochastic Benjamin-Bona-Mahony Equation on Unbounded Domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[45]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[46]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems, 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[47]

Y. Wang and J. Wang, Pullback attractors for multivalued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.  doi: 10.1016/j.jde.2015.02.026.  Google Scholar

[48]

Z. WangS. Zhou and A. Gu, Random attractors for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Analysis, Real World Applications, 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.  Google Scholar

[1]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[2]

Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651

[3]

Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781

[4]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[5]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[6]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[7]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[8]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

[9]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[10]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[11]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

[12]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[13]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[14]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[15]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[16]

Said Hadd, Rosanna Manzo, Abdelaziz Rhandi. Unbounded perturbations of the generator domain. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 703-723. doi: 10.3934/dcds.2015.35.703

[17]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[18]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[19]

Boling Guo, Zhengde Dai. Attractor for the dissipative Hamiltonian amplitude equation governing modulated wave instabilities. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 783-793. doi: 10.3934/dcds.1998.4.783

[20]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (16)
  • HTML views (4)
  • Cited by (1)

Other articles
by authors

[Back to Top]