[1]

M. BartonSmith, Invariant measure for the stochastic GinzburgLandau equation, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 2952.

[2]

M. Bartuccelli, P. Constantin, C. R. Doering, J. D. Gibbon and M. Gisselfält, On the possibility of soft and hard turbulence in the complex GinzburgLandau equation, Phys. D, 44 (1990), 421444.

[3]

J. Bourgain, Invariant measures for the 2Ddefocusing nonlinear Schrödinger equation, Comm. Math. Phys., 176 (1996), 421445.

[4]

P. Bechouche and A. Jüngel, Inviscid limits of the complex GinzburgLandau equation, Comm. Math. Phys., 214 (2000), 201226.

[5]

F. Cacciafesta and A.S. de Suzzoni, Invariant measure for the Schrödinger equation on the real line, J. Funct. Anal., 269 (2015), 271324.

[6]

T. Caraballo, P. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified NavierStokes equations, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 761781.

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp.

[8]

M. D. Chekroun and N. E. GlattHoltz, Invariant measure for dissipative dynamical systems: Abstract results and applications, Commun. Math. Phys., 316 (2012), 723761.

[9]

C. R. Doering, J. D. Gibbon and C. D. Levermore, Weak and strong solutions of the complex GinzburgLandau equation, Phys. D, 71 (1994), 285318.

[10]

J. Q. Duan and P. Holmes, On the Cauchy problem of a generalized GinzburgLandau equation, Nonlinear Anal., 22 (1994), 10331040.

[11]

J. Q. Duan, P. Holmes and E. S. Titi, Global existence theory for a generalized GinzburgLandau equation, Nonlinearity, 5 (1992), 13031314.

[12]

G. Fibich, Selffocusing in the damped nonlinear Schrödinger equation, SIAM J. Appl. Math., 61 (2001), 16801705.

[13]

C. Foias, O. P. Manley, R. Rosa and R. Temam, NavierStokes Equations and Turbulence, Cambridge University Press, 2001.

[14]

T. Funaki and T. Nishikawa, Large deviations for the GinzburgLandau $\nabla \phi $ interface model, Probab. Theory Related Fields, 120 (2001), 535568.

[15]

J. M. Ghidaglia, Finitedimensional behavior for weakly damped driven Schrödinger equations, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 5 (1988), 365405.

[16]

B. L. Guo and H. J. Gao, Finite dimensional behavior of generalized GinzburgLandau equation (in Chinese), Progress in Natural Sciences, 4 (1994), 423434.

[17]

B. L. Guo and Y. Q. Han, Attractors of derivative complex GinzburgLandau equation in unbounded domains, Front. Math. China, 2 (2007), 383416.

[18]

N. Hayashi, K. Nakamita and M. Tsutsumi, On solution of the initial value problem for the nonlinear Schrödinger equations, J. Funct. Anal., 71 (1987), 218245.

[19]

N. Hayashi and M. Tsutsumi, L^{∞}($\mathbb{R}^N$)decay of classical solution of nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh, A, 104 (1986), 309327.

[20]

N. I. Karachalios and N. M. Stavrakakis, Global attractor for the weakly damped driven Schrödinger equation in H^{2}(Ω), NoDEA Nonlinear Differential Equations Appl., 9 (2002), 347360.

[21]

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys, Théor., 46 (1987), 113129.

[22]

G. R. Kent, A Riesz representation theorem, Proc. Amer. Math. Soc., 24 (1970), 629636.

[23]

J. U. Kim, Invariant measures for a stochastic nonlinear Schrödinger equation, Indiana Univ. Math. J., 55 (2006), 687717.

[24]

J. L. Lebowitz, H. A. Rose and E. R. Speer, Statistical mechanics of the nonlinear Schrödinger equations, J. Stat. Phys., 50 (1988), 657687.

[25]

F. Li and B. you, Global attractors for the complex GinzburgLandau equation, J. Math. Anal. Appl., 415 (2014), 1424.

[26]

G. Łukaszewicz, J. Real and J. C. Robinson, Invariant measures for dissipative systems and generalized banach limits, J. Dynam. Differential Equations, 23 (2011), 225250.

[27]

G. Łukaszewicz and J. C. Robinson, Invariant measures for non autonomous dissipative systems, Discrete Contin. Dyn. Syst., 34 (2014), 42114222.

[28]

N. Okazawa and T. Yokota, Monotonicity method applied to the complex GinzburgLandau and related equations, J. Math. Anal. Appl., 267 (2002), 247263.

[29]

E. Pereira, Relaxation to stationary nonequilibrium states in stochastic GinzburgLandau models, Lett. Math. Phys., 64 (2003), 129135.

[30]

X. K. Pu and B. L. Guo, Momentum estimates and ergodicity for the 3D stochastic cubic GinzburgLandau equation with degenerate noise, J. Differential Equations, 251 (2011), 17471777.

[31]

L. E. Reichl, A Modern Course in Statistical Physics, John Wiley & Sons, Inc, New York, 1998. xx+822 pp.

[32]

J. C. Robinson, InfiniteDimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001. xviii+461 pp.

[33]

J. Rougemont, Spacetime invariant measures, entropy, and dimension for stochastic GinzburgLandau equations, Comm. Math. Phys., 225 (2002), 423448.

[34]

W. Rudin, Real and Complex Analysis, McGrawHill Book Co. , New YorkToronto, Ont. London 1966. xi+412 pp.

[35]

R. Temam, InfiniteDimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1997. xxii+648 pp.

[36]

M. Tsutsumi and N. Hayashi, Classical solution of nonlinear Schrödinger equations in higher dimensions, Math. Z., 177 (1981), 217234.

[37]

N. Tzvetkov, Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier (Grenoble), 58 (2008), 25432604.

[38]

N. Tzvetkov, Invariant measures for the nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ., 3 (2006), 111160.

[39]

B. X. Wang, The limit behavior of solutions for the Cauchy problem of the complex GinzburgLandau equation, Comm. Pure Appl. Math., 55 (2002), 481508.

[40]

L. H. Xu, Ergodicity of the stochastic real GinzburgLandau equation driven by αstable noises, Stochastic Process. Appl., 123 (2013), 37103736.

[41]

P. E. Zhidkov, On an infinite sequence of invariant measures for the cubic nonlinear Schrödinger equation, Int. J. Math. Math. Sci., 28 (2001), 375394.
