• Previous Article
    Invariant measures for complex-valued dissipative dynamical systems and applications
  • DCDS-B Home
  • This Issue
  • Next Article
    Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation
August  2017, 22(6): 2447-2463. doi: 10.3934/dcdsb.2017125

Nonsmooth frameworks for an extended Budyko model

1. 

Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

2. 

Mathematics and Science Subdivision, University of Hawaii, West Oahu, 91-1001 Farrington Highway, Library Room 203 Kapolei, HI 96707, USA

3. 

Department of Mathematics, University of Minnesota, 206 Church St SE, Minneapolis, MN 55455, USA

Anna M. Barry, E-mail address: anna.barry@auckland.ac.nz

Received  October 2015 Revised  March 2017 Published  March 2017

In latitude-dependent energy balance models, ice-free and ice-covered conditions form physical boundaries of the system. With carbon dioxide treated as a bifurcation parameter, the resulting bifurcation diagram is nonsmooth with curves of equilibria and boundaries forming corners at points of intersection. Over long time scales, atmospheric carbon dioxide varies dynamically and the nonsmooth diagram becomes a set of quasi-equilibria. However, when introducing carbon dynamics, care must be taken with the physical boundaries and appropriate boundary motion specified. In this article, we extend an energy balance model to include slowly varying carbon dioxide and develop nonsmooth frameworks based on physically relevant boundary dynamics. Within these frameworks, we prove existence and uniqueness of solutions, as well as invariance of the region of phase space bounded by ice-free and ice-covered states.

Citation: Anna M. Barry, Esther WIdiasih, Richard Mcgehee. Nonsmooth frameworks for an extended Budyko model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2447-2463. doi: 10.3934/dcdsb.2017125
References:
[1]

D. AbbotA. Voigt and D. Koll, The Jormungand global climate state and implications for Neoproterozoic glaciations, J. Geophys. Res., (2011). Google Scholar

[2]

É. Benoît, Chasse au canard. Ⅱ. Tunnels-entonnoirs-peignes, Collect. Math., 32 (1981), 77-97. Google Scholar

[3]

É. Benoît, Systémes lents-rapides dans $\mathbb{R}^3$ et leurs canards, in Third Schnepfenried Geometry Conference, Vol. 2 (Schnepfenried, 1982), Astérisque, 109, Soc. Math. France, Paris, 1983,159-191.Google Scholar

[4]

É. Benoît and J. -L. Callot, Chasse au canard. Ⅳ. Annexe numérique, Collect. Math., 32 (1981), 115-119. Google Scholar

[5]

M. I. Budyko, The effect of solar radiation variations on the climate of the earth, Tellus, 21 (1969), 611-619. Google Scholar

[6]

R. F. Cahalan and G. R. North, A stability theorem for energy-balance climate models, Journal of the Atmospheric Sciences, 36 (1979), 1178-1188. Google Scholar

[7]

K. Caldeira and J. F. Kasting, Susceptibility of the early earth to irreversible glaciation caused by carbon dioxide clouds, Nature, 359 (1992), 226-228. Google Scholar

[8]

J. -L. Callot, Chasse au canard. Ⅲ. Les canards ont la vie bréve, Collect. Math., 32 (1981), 99-114. Google Scholar

[9]

C. Carathéodory, Vorlesungen Über reelle Funktionen, Leipzig, 1927.Google Scholar

[10]

M. DesrochesJ. GuckenheimerB. KrauskopfC. KuehnH. Osinga and M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Review, 54 (2012), 211-288. Google Scholar

[11]

F. Diener and M. Diener, Chasse au canard. Ⅰ. Les canards, Collect. Math., 32 (1981), 37-74. Google Scholar

[12]

F. Dumortier and R. H. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 121 (1996), x+100 pp. Google Scholar

[13]

J. M. EdmondM. R. PalmerE. T. Brown and Y. Huh, Fluvial geochemistry of the eastern slope of the northeastern andes and its foredeep in the drainage of the orinoco in colombia and venezuela, Geochimica et cosmochimica acta, 60 (1996), 2949-2974. Google Scholar

[14]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98. Google Scholar

[15]

A. F. Filippov, Differential equations with discontinuous right-hand side, American Mathematical Society Translations, 2 (1964), 199-231. Google Scholar

[16]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publ. Dortrecht, 1988.Google Scholar

[17]

C. E. GravesW. -H. Lee and G. R. North, New parameterizations and sensitivities for simple climate models, Journal of Geophysical Research, 98 (1993), 5025-5036. Google Scholar

[18]

P. Hoffman and D. Schrag, The snowball earth hypothesis: Testing the limits of global change, Terra Nova, 14 (2002), 129-155. Google Scholar

[19]

A. M. Hogg, Glacial cycles and carbon dioxide: A conceptual model, Geophysical Research Letters, 35 (2008), L01701. Google Scholar

[20]

M. R. Jeffrey, Hidden dynamics in models of discontinuity and switching, Physica D: Nonlinear Phenomena, 273 (2014), 34-45. Google Scholar

[21]

C. K. R. T. Jones, Geometric singular perturbation theory, Dynamical Systems, 1609 (1995), 44-118. Google Scholar

[22]

J. Kirschvink, Late proterozoic low-latitude global glaciation: The snowball earth, The Proterozoic Biosphere: A Multidisciplinary Study, (1992), 51-52. Google Scholar

[23]

M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions, SIAM Journal on Mathematical Analysis, 33 (2001), 286-314. Google Scholar

[24]

L. R. KumpS. L. Brantley and M. A. Arthur, Chemical weathering, atmospheric co2, and climate, Annual Review of Earth and Planetary Sciences, 28 (2000), 611-667. Google Scholar

[25]

R. McGehee and C. Lehman, A paleoclimate model of ice-albedo feedback forced by variations in earth's orbit, SIAM Journal on Applied Dynamical Systems, 11 (2012), 684-707. Google Scholar

[26]

R. McGehee and E. Widiasih, A quadratic approximation to Budyko's ice albedo feedback model with ice line dynamics, SIAM J. Appl. Dyn. Syst., 13 (2014), 518-536. Google Scholar

[27]

G. R. North, Theory of energy-balance climate models, J. Atmos. Sci, 32 (1975), 2033-2043. Google Scholar

[28]

R. T. PierrehumbertD. S. AbbotA. Voigt and D. Koll, Climate of the Neoproterozoic, Annual Review of Earth and Planetary Sciences, 39 (2011), 417-460. Google Scholar

[29]

D. Pollard and J. F. Kasting, Snowball Earth: A thin-ice solution with flowing sea glaciers, Journal of Geophysical Research: Oceans (1978-2012), 110(C7), 2005.Google Scholar

[30]

W. D. Sellers, A global climatic model based on the energy balance of the earth-atmosphere system, Journal of Applied Meteorology, 8 (1969), 392-400. Google Scholar

[31]

J. Sieber and P. Kowalczyk, Small-scale instabilities in dynamical systems with sliding, Physica D: Nonlinear Phenomena, 239 (2010), 44-57. Google Scholar

[32]

P. Szmolyan and M. Wechselberger, Canards in $\mathbb{R}^3$, Journal of Differential Equations, 177 (2001), 419-453. Google Scholar

[33]

K. K. Tung, Topics in Mathematical Modelling, Princeton University Press, 2007.Google Scholar

[34]

J. Walsh and E. Widiasih, A dynamics approach to a low-order climate model, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 257-279. Google Scholar

[35]

M. Wechselberger, Existence and bifurcation of canards in $\mathbb{R}^3$ in the case of a folded node, SIAM Journal on Applied Dynamical Systems, 4 (2005), 101-139. Google Scholar

[36]

E. R. Widiasih, Dynamics of the Budyko energy balance model, SIAM Journal on Applied Dynamical Systems, 12 (2013), 2068-2092. Google Scholar

show all references

References:
[1]

D. AbbotA. Voigt and D. Koll, The Jormungand global climate state and implications for Neoproterozoic glaciations, J. Geophys. Res., (2011). Google Scholar

[2]

É. Benoît, Chasse au canard. Ⅱ. Tunnels-entonnoirs-peignes, Collect. Math., 32 (1981), 77-97. Google Scholar

[3]

É. Benoît, Systémes lents-rapides dans $\mathbb{R}^3$ et leurs canards, in Third Schnepfenried Geometry Conference, Vol. 2 (Schnepfenried, 1982), Astérisque, 109, Soc. Math. France, Paris, 1983,159-191.Google Scholar

[4]

É. Benoît and J. -L. Callot, Chasse au canard. Ⅳ. Annexe numérique, Collect. Math., 32 (1981), 115-119. Google Scholar

[5]

M. I. Budyko, The effect of solar radiation variations on the climate of the earth, Tellus, 21 (1969), 611-619. Google Scholar

[6]

R. F. Cahalan and G. R. North, A stability theorem for energy-balance climate models, Journal of the Atmospheric Sciences, 36 (1979), 1178-1188. Google Scholar

[7]

K. Caldeira and J. F. Kasting, Susceptibility of the early earth to irreversible glaciation caused by carbon dioxide clouds, Nature, 359 (1992), 226-228. Google Scholar

[8]

J. -L. Callot, Chasse au canard. Ⅲ. Les canards ont la vie bréve, Collect. Math., 32 (1981), 99-114. Google Scholar

[9]

C. Carathéodory, Vorlesungen Über reelle Funktionen, Leipzig, 1927.Google Scholar

[10]

M. DesrochesJ. GuckenheimerB. KrauskopfC. KuehnH. Osinga and M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Review, 54 (2012), 211-288. Google Scholar

[11]

F. Diener and M. Diener, Chasse au canard. Ⅰ. Les canards, Collect. Math., 32 (1981), 37-74. Google Scholar

[12]

F. Dumortier and R. H. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 121 (1996), x+100 pp. Google Scholar

[13]

J. M. EdmondM. R. PalmerE. T. Brown and Y. Huh, Fluvial geochemistry of the eastern slope of the northeastern andes and its foredeep in the drainage of the orinoco in colombia and venezuela, Geochimica et cosmochimica acta, 60 (1996), 2949-2974. Google Scholar

[14]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98. Google Scholar

[15]

A. F. Filippov, Differential equations with discontinuous right-hand side, American Mathematical Society Translations, 2 (1964), 199-231. Google Scholar

[16]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publ. Dortrecht, 1988.Google Scholar

[17]

C. E. GravesW. -H. Lee and G. R. North, New parameterizations and sensitivities for simple climate models, Journal of Geophysical Research, 98 (1993), 5025-5036. Google Scholar

[18]

P. Hoffman and D. Schrag, The snowball earth hypothesis: Testing the limits of global change, Terra Nova, 14 (2002), 129-155. Google Scholar

[19]

A. M. Hogg, Glacial cycles and carbon dioxide: A conceptual model, Geophysical Research Letters, 35 (2008), L01701. Google Scholar

[20]

M. R. Jeffrey, Hidden dynamics in models of discontinuity and switching, Physica D: Nonlinear Phenomena, 273 (2014), 34-45. Google Scholar

[21]

C. K. R. T. Jones, Geometric singular perturbation theory, Dynamical Systems, 1609 (1995), 44-118. Google Scholar

[22]

J. Kirschvink, Late proterozoic low-latitude global glaciation: The snowball earth, The Proterozoic Biosphere: A Multidisciplinary Study, (1992), 51-52. Google Scholar

[23]

M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions, SIAM Journal on Mathematical Analysis, 33 (2001), 286-314. Google Scholar

[24]

L. R. KumpS. L. Brantley and M. A. Arthur, Chemical weathering, atmospheric co2, and climate, Annual Review of Earth and Planetary Sciences, 28 (2000), 611-667. Google Scholar

[25]

R. McGehee and C. Lehman, A paleoclimate model of ice-albedo feedback forced by variations in earth's orbit, SIAM Journal on Applied Dynamical Systems, 11 (2012), 684-707. Google Scholar

[26]

R. McGehee and E. Widiasih, A quadratic approximation to Budyko's ice albedo feedback model with ice line dynamics, SIAM J. Appl. Dyn. Syst., 13 (2014), 518-536. Google Scholar

[27]

G. R. North, Theory of energy-balance climate models, J. Atmos. Sci, 32 (1975), 2033-2043. Google Scholar

[28]

R. T. PierrehumbertD. S. AbbotA. Voigt and D. Koll, Climate of the Neoproterozoic, Annual Review of Earth and Planetary Sciences, 39 (2011), 417-460. Google Scholar

[29]

D. Pollard and J. F. Kasting, Snowball Earth: A thin-ice solution with flowing sea glaciers, Journal of Geophysical Research: Oceans (1978-2012), 110(C7), 2005.Google Scholar

[30]

W. D. Sellers, A global climatic model based on the energy balance of the earth-atmosphere system, Journal of Applied Meteorology, 8 (1969), 392-400. Google Scholar

[31]

J. Sieber and P. Kowalczyk, Small-scale instabilities in dynamical systems with sliding, Physica D: Nonlinear Phenomena, 239 (2010), 44-57. Google Scholar

[32]

P. Szmolyan and M. Wechselberger, Canards in $\mathbb{R}^3$, Journal of Differential Equations, 177 (2001), 419-453. Google Scholar

[33]

K. K. Tung, Topics in Mathematical Modelling, Princeton University Press, 2007.Google Scholar

[34]

J. Walsh and E. Widiasih, A dynamics approach to a low-order climate model, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 257-279. Google Scholar

[35]

M. Wechselberger, Existence and bifurcation of canards in $\mathbb{R}^3$ in the case of a folded node, SIAM Journal on Applied Dynamical Systems, 4 (2005), 101-139. Google Scholar

[36]

E. R. Widiasih, Dynamics of the Budyko energy balance model, SIAM Journal on Applied Dynamical Systems, 12 (2013), 2068-2092. Google Scholar

Figure 1.  Bifurcation diagrams from energy balance models illustrating hysteresis in the climate system. In each figure, solid lines correspond to stable steady states while dashed lines correspond to unstable steady states. The positive horizontal axis can be thought of as increasing atmospheric carbon dioxide, and the vertical axis is the latitude of the ice line. Stability of snowball and ice-free states is inferred; these are physical boundaries and not true equilibria of the equations
Figure 2.  The physical region of the phase space and possible fixed points of the system given by the $\eta$-nullcline, $h=0$. The location of the equilibrium is determined by the critical effective area of exposed land $0<\eta_c<1$. Solid black portions of the curve represent stable equilibria while the dashed lines denote unstable equilibria. Solid black portions of the boundary are attractive sliding regions and dashed boundaries are crossing regions
Figure 3.  Attractors of the system when (a) $\eta_c=0.85$ and (b) $\eta_c=0.6$. The $+$ symbol marks the initial condition and the horizontal long-dashed line is the $A$-nullcline. In (a), the orbit reaches the ice-free state and slides until it reaches the intersection of the folded curve with this boundary. It then enters the physical region and approaches the small ice cap equilibrium. In (b), the fixed point is unstable and the orbit oscillates between the ice-free and ice-covered boundaries. Parameters are as in Table 1 and $\delta=0.01$. Simulations were performed using Mathematica 9
Figure 4.  Periodic orbits of the Jormungand system when (a) $\eta_c=0.8$ and (b) $\eta_c=0.15$. The folded curve is the $\eta$-nullcline $h_J(A, \eta)=0$ and dashing is as in Figures 2 and 3. Parameters are as in Table 3 and $\delta=0.01$
Table 1.  Parameter values as in [1]
Parameters Value Units
$Q$ 321 $\text{W}\text{m}^{-2}$
$s_1$ 1 dimensionless
$s_2$ -0.482 dimensionless
$B$ 1.5 $\text{W}\text{m}^{-2}\text{K}^{-1}$
$C$ 2.5B $\text{W}\text{m}^{-2}\text{K}^{-1}$
$\alpha_1$ 0.32 dimensionless
$\alpha_2$ 0.62 dimensionless
$T_c$ $-10$
Parameters Value Units
$Q$ 321 $\text{W}\text{m}^{-2}$
$s_1$ 1 dimensionless
$s_2$ -0.482 dimensionless
$B$ 1.5 $\text{W}\text{m}^{-2}\text{K}^{-1}$
$C$ 2.5B $\text{W}\text{m}^{-2}\text{K}^{-1}$
$\alpha_1$ 0.32 dimensionless
$\alpha_2$ 0.62 dimensionless
$T_c$ $-10$
Table 2.  Functions as in [26]
Functions
$s(y) = 1 - \frac{0.482}{2} (3 y^2 - 1)$
$h(A, \eta)=\rho\left(112.88+56.91\eta-24.31\eta^2-11.05\eta^3-\frac{A}{1.5}\right)$
$g(A, \eta)=\delta(\eta-\eta_c)$
$\alpha(\eta, y)=\begin{cases} &\alpha_1 \text { when } y< \eta \\ & \frac{\alpha_1+\alpha_2}{2} \text{ when } y=\eta\\ &\alpha_2 \text{ when } y>\eta \end{cases}$
Functions
$s(y) = 1 - \frac{0.482}{2} (3 y^2 - 1)$
$h(A, \eta)=\rho\left(112.88+56.91\eta-24.31\eta^2-11.05\eta^3-\frac{A}{1.5}\right)$
$g(A, \eta)=\delta(\eta-\eta_c)$
$\alpha(\eta, y)=\begin{cases} &\alpha_1 \text { when } y< \eta \\ & \frac{\alpha_1+\alpha_2}{2} \text{ when } y=\eta\\ &\alpha_2 \text{ when } y>\eta \end{cases}$
Table 3.  Parameter values as in Table 1 unless specified above. Additional values taken from [1]
Parameters Value Units
$T_c$ 0
$M$ 25 dimensionless
$\alpha_w$ $0.35$ dimensionless
$\alpha_i$ $0.45$ dimensionless
$\alpha_s$ $0.8$ dimensionless
Parameters Value Units
$T_c$ 0
$M$ 25 dimensionless
$\alpha_w$ $0.35$ dimensionless
$\alpha_i$ $0.45$ dimensionless
$\alpha_s$ $0.8$ dimensionless
[1]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[2]

Yancong Xu, Deming Zhu, Xingbo Liu. Bifurcations of multiple homoclinics in general dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 945-963. doi: 10.3934/dcds.2011.30.945

[3]

Michael Ghil. The wind-driven ocean circulation: Applying dynamical systems theory to a climate problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 189-228. doi: 10.3934/dcds.2017008

[4]

Lana Horvat Dmitrović. Box dimension and bifurcations of one-dimensional discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1287-1307. doi: 10.3934/dcds.2012.32.1287

[5]

E. Canalias, Josep J. Masdemont. Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the sun-earth and earth-moon systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 261-279. doi: 10.3934/dcds.2006.14.261

[6]

Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 897-909. doi: 10.3934/dcdss.2009.2.897

[7]

Carlos Castillo-Chavez, Baojun Song. Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences & Engineering, 2004, 1 (2) : 361-404. doi: 10.3934/mbe.2004.1.361

[8]

H. W. Broer, Renato Vitolo. Dynamical systems modeling of low-frequency variability in low-order atmospheric models. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 401-419. doi: 10.3934/dcdsb.2008.10.401

[9]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[10]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1401-1414. doi: 10.3934/cpaa.2011.10.1401

[11]

El Houcein El Abdalaoui, Sylvain Bonnot, Ali Messaoudi, Olivier Sester. On the Fibonacci complex dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2449-2471. doi: 10.3934/dcds.2016.36.2449

[12]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[13]

Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447

[14]

John Erik Fornæss. Sustainable dynamical systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1361-1386. doi: 10.3934/dcds.2003.9.1361

[15]

Vieri Benci, C. Bonanno, Stefano Galatolo, G. Menconi, M. Virgilio. Dynamical systems and computable information. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 935-960. doi: 10.3934/dcdsb.2004.4.935

[16]

Josiney A. Souza, Tiago A. Pacifico, Hélio V. M. Tozatti. A note on parallelizable dynamical systems. Electronic Research Announcements, 2017, 24: 64-67. doi: 10.3934/era.2017.24.007

[17]

Mădălina Roxana Buneci. Morphisms of discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 91-107. doi: 10.3934/dcds.2011.29.91

[18]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[19]

Tobias Wichtrey. Harmonic limits of dynamical systems. Conference Publications, 2011, 2011 (Special) : 1432-1439. doi: 10.3934/proc.2011.2011.1432

[20]

Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (25)
  • HTML views (12)
  • Cited by (0)

Other articles
by authors

[Back to Top]