[1]
|
D. Abbot, A. Voigt and D. Koll, The Jormungand global climate state and implications for Neoproterozoic glaciations, J. Geophys. Res., 2011.
|
[2]
|
É. Benoît, Chasse au canard. Ⅱ. Tunnels-entonnoirs-peignes, Collect. Math., 32 (1981), 77-97.
|
[3]
|
É. Benoît, Systémes lents-rapides dans $\mathbb{R}^3$ et leurs canards, in Third Schnepfenried Geometry Conference, Vol. 2 (Schnepfenried, 1982), Astérisque, 109, Soc. Math. France, Paris, 1983,159-191.
|
[4]
|
É. Benoît and J.-L. Callot, Chasse au canard. Ⅳ. Annexe numérique, Collect. Math., 32 (1981), 115-119.
|
[5]
|
M. I. Budyko, The effect of solar radiation variations on the climate of the earth, Tellus, 21 (1969), 611-619.
|
[6]
|
R. F. Cahalan and G. R. North, A stability theorem for energy-balance climate models, Journal of the Atmospheric Sciences, 36 (1979), 1178-1188.
|
[7]
|
K. Caldeira and J. F. Kasting, Susceptibility of the early earth to irreversible glaciation caused by carbon dioxide clouds, Nature, 359 (1992), 226-228.
|
[8]
|
J.-L. Callot, Chasse au canard. Ⅲ. Les canards ont la vie bréve, Collect. Math., 32 (1981), 99-114.
|
[9]
|
C. Carathéodory, Vorlesungen Über reelle Funktionen, Leipzig, 1927.
|
[10]
|
M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. Osinga and M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Review, 54 (2012), 211-288.
|
[11]
|
F. Diener and M. Diener, Chasse au canard. Ⅰ. Les canards, Collect. Math., 32 (1981), 37-74.
|
[12]
|
F. Dumortier and R. H. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 121 (1996), x+100 pp.
|
[13]
|
J. M. Edmond, M. R. Palmer, E. T. Brown and Y. Huh, Fluvial geochemistry of the eastern slope of the northeastern andes and its foredeep in the drainage of the orinoco in colombia and venezuela, Geochimica et cosmochimica acta, 60 (1996), 2949-2974.
|
[14]
|
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98.
|
[15]
|
A. F. Filippov, Differential equations with discontinuous right-hand side, American Mathematical Society Translations, 2 (1964), 199-231.
|
[16]
|
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publ. Dortrecht, 1988.
|
[17]
|
C. E. Graves, W.-H. Lee and G. R. North, New parameterizations and sensitivities for simple climate models, Journal of Geophysical Research, 98 (1993), 5025-5036.
|
[18]
|
P. Hoffman and D. Schrag, The snowball earth hypothesis: Testing the limits of global change, Terra Nova, 14 (2002), 129-155.
|
[19]
|
A. M. Hogg, Glacial cycles and carbon dioxide: A conceptual model, Geophysical Research Letters, 35 (2008), L01701.
|
[20]
|
M. R. Jeffrey, Hidden dynamics in models of discontinuity and switching, Physica D: Nonlinear Phenomena, 273 (2014), 34-45.
|
[21]
|
C. K. R. T. Jones, Geometric singular perturbation theory, Dynamical Systems, 1609 (1995), 44-118.
|
[22]
|
J. Kirschvink, Late proterozoic low-latitude global glaciation: The snowball earth, The Proterozoic Biosphere: A Multidisciplinary Study, (1992), 51-52.
|
[23]
|
M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions, SIAM Journal on Mathematical Analysis, 33 (2001), 286-314.
|
[24]
|
L. R. Kump, S. L. Brantley and M. A. Arthur, Chemical weathering, atmospheric co2, and climate, Annual Review of Earth and Planetary Sciences, 28 (2000), 611-667.
|
[25]
|
R. McGehee and C. Lehman, A paleoclimate model of ice-albedo feedback forced by variations in earth's orbit, SIAM Journal on Applied Dynamical Systems, 11 (2012), 684-707.
|
[26]
|
R. McGehee and E. Widiasih, A quadratic approximation to Budyko's ice albedo feedback model with ice line dynamics, SIAM J. Appl. Dyn. Syst., 13 (2014), 518-536.
|
[27]
|
G. R. North, Theory of energy-balance climate models, J. Atmos. Sci, 32 (1975), 2033-2043.
|
[28]
|
R. T. Pierrehumbert, D. S. Abbot, A. Voigt and D. Koll, Climate of the Neoproterozoic, Annual Review of Earth and Planetary Sciences, 39 (2011), 417-460.
|
[29]
|
D. Pollard and J. F. Kasting, Snowball Earth: A thin-ice solution with flowing sea glaciers, Journal of Geophysical Research: Oceans (1978-2012), 110(C7), 2005.
|
[30]
|
W. D. Sellers, A global climatic model based on the energy balance of the earth-atmosphere system, Journal of Applied Meteorology, 8 (1969), 392-400.
|
[31]
|
J. Sieber and P. Kowalczyk, Small-scale instabilities in dynamical systems with sliding, Physica D: Nonlinear Phenomena, 239 (2010), 44-57.
|
[32]
|
P. Szmolyan and M. Wechselberger, Canards in $\mathbb{R}^3$, Journal of Differential Equations, 177 (2001), 419-453.
|
[33]
|
K. K. Tung, Topics in Mathematical Modelling, Princeton University Press, 2007.
|
[34]
|
J. Walsh and E. Widiasih, A dynamics approach to a low-order climate model, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 257-279.
|
[35]
|
M. Wechselberger, Existence and bifurcation of canards in $\mathbb{R}^3$ in the case of a folded node, SIAM Journal on Applied Dynamical Systems, 4 (2005), 101-139.
|
[36]
|
E. R. Widiasih, Dynamics of the Budyko energy balance model, SIAM Journal on Applied Dynamical Systems, 12 (2013), 2068-2092.
|