\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems

The author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Analysis of chemotactic cross-diffusion in complex frameworks.
Abstract Full Text(HTML) Related Papers Cited by
  • We consider the no-flux initial-boundary value problem for Keller-Segel-type chemotaxis growth systems of the form

    in a ball $Ω\subset\mathbb{R}^n$ , $n≥ 3$ , with parameters $χ>0, ρ≥ 0$ and $μ>0$ .

    By means of an argument based on a conditional quasi-energy inequality, it is firstly shown that if $χ=1$ is fixed, then for any given $K>0$ and $T>0$ one can find radially symmetric initial data, possibly depending on $K$ and $T$ , such that for arbitrary $μ∈ (0, 1)$ the corresponding local-in-time classical solution $(u, v)$ satisfies

    with some $x∈Ω$ and $t∈ (0, T)$ ; in fact, this growth phenomenon is actually identified as being generic in the sense that the set of all initial data having this property is dense in the set of all suitably regular radial initial data in a certain topology.

    Secondly, turning a focus on possible effects of large chemotactic sensitivities, on the basis of the above it is shown that when $ρ≥ 0$ and $μ>0$ are fixed, then for all $L>0, T>0$ and $χ>μ$ one can fix radial initial data $(u_{0, χ}, v_{0, χ})$ which decay in $L^∞(Ω)× W^{1, ∞}(Ω)$ as $χ\to∞$ , and which are such that for the respective solution $(u_χ, v_χ)$ there exist $x∈Ω$ and $t∈ (0, T)$ fulfilling

    $\begin{eqnarray*} u_χ(x, t) > L. \end{eqnarray*}$

    Mathematics Subject Classification: Primary:35B44;Secondary:92C17, 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. AidaK. OsakiT. TsujikawaA. Yagi and M. Mimura, Chemotaxis and growth system with singular sensitivity function, Nonlinear Anal Real World Appl., 6 (2005), 323-336.  doi: 10.1016/j.nonrwa.2004.08.011.
    [2] M. AidaT. TsujikawaM. EfendievA. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London Math. Soc., 74 (2006), 453-474.  doi: 10.1112/S0024610706023015.
    [3] N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.
    [4] M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: The role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci., 15 (2005), 1685-1734.  doi: 10.1142/S0218202505000947.
    [5] H. J. EberlD. F. Parker and M. C. M. van Loosdrecht, A new deterministic spatio-temporal continuum model for biofilm development, J. Theor. Med., 3 (2001), 161-175. 
    [6] M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scu. Norm. Super. Pisa Cl. Sci., 24 (1997), 663-683. 
    [7] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.
    [8] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresberichte DMV, 105 (2003), 103-165. 
    [9] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Eq., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.
    [10] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. 
    [11] K. KutoK. OsakiT. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Physica D, 241 (2012), 1629-1639.  doi: 10.1016/j.physd.2012.06.009.
    [12] J. Lankeit, Chemotaxis can prevent thresholds on population density, Discr. Cont. Dyn. Syst. B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.
    [13] J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Eq., 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.
    [14] G. MeralC. Stinner and C. Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, Discr. Cont. Dyn. Syst. B, 20 (2015), 189-213.  doi: 10.3934/dcdsb.2015.20.189.
    [15] T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., 40 (1997), 411-433. 
    [16] E. Nakaguchi and M. Efendiev, On a new dimension estimate of the global attractor for chemotaxis-growth systems, Osaka J. Math., 45 (2008), 273-281. 
    [17] K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis, 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.
    [18] K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441-469. 
    [19] K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (2011), 363-375. 
    [20] K. J. PainterP. K. Maini and H. G. Othmer, Complex spatial patterns in a hybrid chemotaxis reaction-diffusion model, J. Math. Biol., 41 (2000), 285-314. 
    [21] C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.
    [22] Z. SzymańskaC. Morales RodrigoM. Lachowicz and M. A. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Mod. Meth. Appl. Sci., 19 (2009), 257-281.  doi: 10.1142/S0218202509003425.
    [23] J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Part. Differential Eq., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.
    [24] Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source, J. Differential Eq., 259 (2015), 6142-6161.  doi: 10.1016/j.jde.2015.07.019.
    [25] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Part. Differential Eq., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.
    [26] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767, arXiv: 1112.4156v1 doi: 10.1016/j.matpur.2013.01.020.
    [27] M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Eq., 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.
    [28] M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.
  • 加载中
SHARE

Article Metrics

HTML views(1498) PDF downloads(332) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return