• Previous Article
    Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility
  • DCDS-B Home
  • This Issue
  • Next Article
    A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment
September  2017, 22(7): 2777-2793. doi: 10.3934/dcdsb.2017135

Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems

Universität Paderborn, Institut für Mathematik, Warburger Str. 100,33098 Paderborn, Germany

Received  August 2016 Revised  September 2016 Published  April 2017

Fund Project: The author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Analysis of chemotactic cross-diffusion in complex frameworks.

We consider the no-flux initial-boundary value problem for Keller-Segel-type chemotaxis growth systems of the form
$\begin{eqnarray*} ≤\left\{ \begin{array}{ll} u_t=Δ u -χ \nabla · (u\nabla v) + ρ u -μ u^2, & x∈Ω, \ t>0, \\ v_t=Δ v -v+u, & x∈Ω, \ t>0, \end{array} \right. \end{eqnarray*}$
in a ball
$Ω\subset\mathbb{R}^n$
,
$n≥ 3$
, with parameters
$χ>0, ρ≥ 0$
and
$μ>0$
.
By means of an argument based on a conditional quasi-energy inequality, it is firstly shown that if
$χ=1$
is fixed, then for any given
$K>0$
and
$T>0$
one can find radially symmetric initial data, possibly depending on
$K$
and
$T$
, such that for arbitrary
$μ∈ (0, 1)$
the corresponding local-in-time classical solution
$(u, v)$
satisfies
$\begin{eqnarray*} u(x, t) > \frac{K}{μ} \end{eqnarray*}$
with some
$x∈Ω$
and
$t∈ (0, T)$
; in fact, this growth phenomenon is actually identified as being generic in the sense that the set of all initial data having this property is dense in the set of all suitably regular radial initial data in a certain topology.
Secondly, turning a focus on possible effects of large chemotactic sensitivities, on the basis of the above it is shown that when
$ρ≥ 0$
and
$μ>0$
are fixed, then for all
$L>0, T>0$
and
$χ>μ$
one can fix radial initial data
$(u_{0, χ}, v_{0, χ})$
which decay in
$L^∞(Ω)× W^{1, ∞}(Ω)$
as
$χ\to∞$
, and which are such that for the respective solution
$(u_χ, v_χ)$
there exist
$x∈Ω$
and
$t∈ (0, T)$
fulfilling
$\begin{eqnarray*} u_χ(x, t) > L. \end{eqnarray*}$
Citation: Michael Winkler. Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2777-2793. doi: 10.3934/dcdsb.2017135
References:
[1]

M. AidaK. OsakiT. TsujikawaA. Yagi and M. Mimura, Chemotaxis and growth system with singular sensitivity function, Nonlinear Anal Real World Appl., 6 (2005), 323-336.  doi: 10.1016/j.nonrwa.2004.08.011.

[2]

M. AidaT. TsujikawaM. EfendievA. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London Math. Soc., 74 (2006), 453-474.  doi: 10.1112/S0024610706023015.

[3]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.

[4]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: The role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci., 15 (2005), 1685-1734.  doi: 10.1142/S0218202505000947.

[5]

H. J. EberlD. F. Parker and M. C. M. van Loosdrecht, A new deterministic spatio-temporal continuum model for biofilm development, J. Theor. Med., 3 (2001), 161-175. 

[6]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scu. Norm. Super. Pisa Cl. Sci., 24 (1997), 663-683. 

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresberichte DMV, 105 (2003), 103-165. 

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Eq., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.

[10]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. 

[11]

K. KutoK. OsakiT. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Physica D, 241 (2012), 1629-1639.  doi: 10.1016/j.physd.2012.06.009.

[12]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discr. Cont. Dyn. Syst. B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.

[13]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Eq., 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.

[14]

G. MeralC. Stinner and C. Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, Discr. Cont. Dyn. Syst. B, 20 (2015), 189-213.  doi: 10.3934/dcdsb.2015.20.189.

[15]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., 40 (1997), 411-433. 

[16]

E. Nakaguchi and M. Efendiev, On a new dimension estimate of the global attractor for chemotaxis-growth systems, Osaka J. Math., 45 (2008), 273-281. 

[17]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis, 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.

[18]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441-469. 

[19]

K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (2011), 363-375. 

[20]

K. J. PainterP. K. Maini and H. G. Othmer, Complex spatial patterns in a hybrid chemotaxis reaction-diffusion model, J. Math. Biol., 41 (2000), 285-314. 

[21]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.

[22]

Z. SzymańskaC. Morales RodrigoM. Lachowicz and M. A. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Mod. Meth. Appl. Sci., 19 (2009), 257-281.  doi: 10.1142/S0218202509003425.

[23]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Part. Differential Eq., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.

[24]

Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source, J. Differential Eq., 259 (2015), 6142-6161.  doi: 10.1016/j.jde.2015.07.019.

[25]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Part. Differential Eq., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767, arXiv: 1112.4156v1 doi: 10.1016/j.matpur.2013.01.020.

[27]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Eq., 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.

[28]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.

show all references

References:
[1]

M. AidaK. OsakiT. TsujikawaA. Yagi and M. Mimura, Chemotaxis and growth system with singular sensitivity function, Nonlinear Anal Real World Appl., 6 (2005), 323-336.  doi: 10.1016/j.nonrwa.2004.08.011.

[2]

M. AidaT. TsujikawaM. EfendievA. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London Math. Soc., 74 (2006), 453-474.  doi: 10.1112/S0024610706023015.

[3]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.

[4]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: The role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci., 15 (2005), 1685-1734.  doi: 10.1142/S0218202505000947.

[5]

H. J. EberlD. F. Parker and M. C. M. van Loosdrecht, A new deterministic spatio-temporal continuum model for biofilm development, J. Theor. Med., 3 (2001), 161-175. 

[6]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scu. Norm. Super. Pisa Cl. Sci., 24 (1997), 663-683. 

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresberichte DMV, 105 (2003), 103-165. 

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Eq., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.

[10]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. 

[11]

K. KutoK. OsakiT. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Physica D, 241 (2012), 1629-1639.  doi: 10.1016/j.physd.2012.06.009.

[12]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discr. Cont. Dyn. Syst. B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.

[13]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Eq., 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.

[14]

G. MeralC. Stinner and C. Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, Discr. Cont. Dyn. Syst. B, 20 (2015), 189-213.  doi: 10.3934/dcdsb.2015.20.189.

[15]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., 40 (1997), 411-433. 

[16]

E. Nakaguchi and M. Efendiev, On a new dimension estimate of the global attractor for chemotaxis-growth systems, Osaka J. Math., 45 (2008), 273-281. 

[17]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis, 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.

[18]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441-469. 

[19]

K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (2011), 363-375. 

[20]

K. J. PainterP. K. Maini and H. G. Othmer, Complex spatial patterns in a hybrid chemotaxis reaction-diffusion model, J. Math. Biol., 41 (2000), 285-314. 

[21]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.

[22]

Z. SzymańskaC. Morales RodrigoM. Lachowicz and M. A. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Mod. Meth. Appl. Sci., 19 (2009), 257-281.  doi: 10.1142/S0218202509003425.

[23]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Part. Differential Eq., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.

[24]

Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source, J. Differential Eq., 259 (2015), 6142-6161.  doi: 10.1016/j.jde.2015.07.019.

[25]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Part. Differential Eq., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767, arXiv: 1112.4156v1 doi: 10.1016/j.matpur.2013.01.020.

[27]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Eq., 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.

[28]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.

[1]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

[2]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[3]

Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022075

[4]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[5]

István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134

[6]

Maria Antonietta Farina, Monica Marras, Giuseppe Viglialoro. On explicit lower bounds and blow-up times in a model of chemotaxis. Conference Publications, 2015, 2015 (special) : 409-417. doi: 10.3934/proc.2015.0409

[7]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations and Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

[8]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[9]

Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang. Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4321-4335. doi: 10.3934/dcdss.2021108

[10]

Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022106

[11]

Yan Li. Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5461-5480. doi: 10.3934/dcdsb.2019066

[12]

Jianing Xie. Blow-up prevention by quadratic degradation in a higher-dimensional chemotaxis-growth model with indirect attractant production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 4007-4022. doi: 10.3934/dcdsb.2021216

[13]

Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125

[14]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[15]

Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020

[16]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

[17]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[18]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[19]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[20]

W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (283)
  • HTML views (116)
  • Cited by (12)

Other articles
by authors

[Back to Top]