In this article, we study a coupled Allen-Cahn-Navier-Stokes model with delays in a two-dimensional domain. The model consists of the Navier-Stokes equations for the velocity, coupled with an Allen-Cahn model for the order (phase) parameter. We prove the existence and uniqueness of the weak and strong solution when the external force contains some delays. We also discuss the asymptotic behavior of the weak solutions and the stability of the stationary solutions.
Citation: |
T. Blesgen
, A generalization of the Navier-Stokes equation to two-phase flow, Pysica D (Applied Physics), 32 (1999)
, 1119-1123.
doi: 10.1088/0022-3727/32/10/307.![]() ![]() |
|
G. Caginalp
, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986)
, 205-245.
doi: 10.1007/BF00254827.![]() ![]() ![]() |
|
T. Caraballo
and X. Han
, A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015)
, 1079-1101.
doi: 10.3934/dcdss.2015.8.1079.![]() ![]() ![]() |
|
T. Caraballo
, A. M. Márquez-Durán
and J. Real
, Pullback and forward attractors for a 3D LANS-α model with delay, Discrete Contin. Dyn. Syst., 15 (2006)
, 559-578.
doi: 10.3934/dcds.2006.15.559.![]() ![]() ![]() |
|
T. Caraballo
and J. Real
, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001)
, 2441-2453.
doi: 10.1098/rspa.2001.0807.![]() ![]() ![]() |
|
T. Caraballo
and J. Real
, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003)
, 3181-3194.
doi: 10.1098/rspa.2003.1166.![]() ![]() ![]() |
|
T. Caraballo
and J. Real
, Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004)
, 271-297.
doi: 10.1016/j.jde.2004.04.012.![]() ![]() ![]() |
|
R. Datko
, Representation of solutions and stability of linear differential-difference equations in a Banach space, J. Differential Equations, 29 (1978)
, 105-166.
doi: 10.1016/0022-0396(78)90043-8.![]() ![]() ![]() |
|
E. Feireisl
, H. Petzeltová
, E. Rocca
and G. Schimperna
, Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., 20 (2010)
, 1129-1160.
doi: 10.1142/S0218202510004544.![]() ![]() ![]() |
|
C. G. Gal
and M. Grasselli
, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010)
, 401-436.
doi: 10.1016/j.anihpc.2009.11.013.![]() ![]() ![]() |
|
C. G. Gal
and M. Grasselli
, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28 (2010)
, 1-39.
doi: 10.3934/dcds.2010.28.1.![]() ![]() ![]() |
|
C. G. Gal
and M. Grasselli
, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010)
, 655-678.
doi: 10.1007/s11401-010-0603-6.![]() ![]() ![]() |
|
P.C. Hohenberg
and B. I. Halperin
, Theory of dynamical critical phenomena, Rev. Modern Phys., 49 (1977)
, 435-479.
![]() |
|
T. Tachim Medjo
, Pullback attractors for a non-autonomous homogeneous two-phase flow model, J. Diff. Equa., 253 (2012)
, 1779-1806.
doi: 10.1016/j.jde.2012.06.004.![]() ![]() ![]() |
|
H. Mei
, G. Yin
and F. Wu
, Properties of stochastic integro-differential equations with infinite delay: regularity, ergodicity, weak sense Fokker-Planck equations, Stochastic Process. Appl., 126 (2016)
, 3102-3123.
doi: 10.1016/j.spa.2016.04.003.![]() ![]() ![]() |
|
S. A. Messaoudi, A. Fareh and N. Doudi, Well posedness and exponential stability in a wave equation with a strong damping and a strong delay, J. Math. Phys. , 57 (2016), 111501, 13 pp.
doi: 10.1063/1.4966551.![]() ![]() ![]() |
|
C. Niche
and G. Planas
, Existence and decay of solutions in full space to Navier-Stokes equations with delays, Nonlinear Anal., 74 (2011)
, 244-256.
doi: 10.1016/j.na.2010.08.038.![]() ![]() ![]() |
|
A. Onuki
, Phase transition of fluids in shear flow, J. Phys. Condens. Matter, 9 (1997)
, 6119-6157.
doi: 10.1017/CBO9780511534874.012.![]() ![]() |
|
T. tachim Medjo
, Attractors for a two-phase flow model with delays, Differential Integral Equations, 29 (2016)
, 1071-1092.
![]() ![]() |
|
T. Taniguchi
, The exponential behavior of Navier-Stokes equations with time delay external force, Discrete Contin. Dyn. Syst., 12 (2005)
, 997-1018.
doi: 10.3934/dcds.2005.12.997.![]() ![]() ![]() |
|
R. Temam,
Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68. Appl. Math. Sci. , Springer-Verlag, New York, second edition, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
|
X. S. Wang
and J. Wu
, Seasonal migration dynamics: periodicity, transition delay and finite-dimensional reduction, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012)
, 634-650.
doi: 10.1098/rspa.2011.0236.![]() ![]() ![]() |