November  2017, 22(9): 3369-3378. doi: 10.3934/dcdsb.2017141

Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity

1. 

Institute of Mathematical Sciences, Renmin University, Beijing 100872, China

2. 

Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany

* Corresponding author

Received  October 2016 Revised  January 2017 Published  April 2017

Fund Project: XC is supported by the Research Funds of Renmin University of China (15XNLF21), and by China Postdoctoral Science Foundation (2016M591319)

The fully parabolic Keller-Segel system with logistic source
$\begin{equation} \left\{ \begin{array}{llc} \displaystyle u_t=\Delta u-\chi\nabla\cdot(u\nabla v)+\kappa u-\mu u^2, &(x,t)\in \Omega\times (0,T),\\ \displaystyle \tau v_t=\Delta v-v+u, &(x,t)\in\Omega\times (0,T), \end{array} \right.(\star) \end{equation}$
is considered in a bounded domain $\Omega\subset\mathbb{R}^N$ ($N≥ 1$) under Neumann boundary conditions, where $κ∈\mathbb{R}$, $μ>0$, $χ>0$ and $τ>0$. It is shown that if the ratio $\frac{χ}{μ}$ is sufficiently small, then any global classical solution $(u, v)$ converges to the spatially homogenous steady state $(\frac{κ_+}{μ}, \frac{κ_+}{μ})$ in the large time limit. Here we use an approach based on maximal Sobolev regularity and thus remove the restrictions $τ=1$ and the convexity of $\Omega$ required in [17].
Citation: Xinru Cao. Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3369-3378. doi: 10.3934/dcdsb.2017141
References:
[1]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[2]

T. Black, J. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA Journal of Applied Mathematics, 81 (2016), 860-876, arXiv: 1604.03529, 2016. doi: 10.1093/imamat/hxw036.  Google Scholar

[3]

X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.  doi: 10.3934/dcds.2015.35.1891.  Google Scholar

[4]

X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model Z. Angew. Math. Phys. , 67 (2016), Art. 11, 13 pp. doi: 10.1007/s00033-015-0601-3.  Google Scholar

[5]

X. Cao and M. Winkler, Sharp decay estimates in a bioconvection model with quardratic degradation in bounded domains, preprint, 2016. Google Scholar

[6]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete and Continuous Dynamical Systems-B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.  Google Scholar

[7]

N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system preprint, 2013. doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[8]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[9]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.   Google Scholar

[10]

J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.  doi: 10.1088/0951-7715/25/5/1413.  Google Scholar

[11]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[12]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-spcies chemotaxis model, J. Math. Biology, 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.  Google Scholar

[13]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[14]

M. Winkler, Blow-up on a higher-dimensional chemotaxis system deapite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[15]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[16]

M. Winkler, How far can chemotatic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.  Google Scholar

[17]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.  Google Scholar

[18]

C. YangX. CaoZ. Jiang and S. Zheng, Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015), 585-591.  doi: 10.1016/j.jmaa.2015.04.093.  Google Scholar

show all references

References:
[1]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[2]

T. Black, J. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA Journal of Applied Mathematics, 81 (2016), 860-876, arXiv: 1604.03529, 2016. doi: 10.1093/imamat/hxw036.  Google Scholar

[3]

X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.  doi: 10.3934/dcds.2015.35.1891.  Google Scholar

[4]

X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model Z. Angew. Math. Phys. , 67 (2016), Art. 11, 13 pp. doi: 10.1007/s00033-015-0601-3.  Google Scholar

[5]

X. Cao and M. Winkler, Sharp decay estimates in a bioconvection model with quardratic degradation in bounded domains, preprint, 2016. Google Scholar

[6]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete and Continuous Dynamical Systems-B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.  Google Scholar

[7]

N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system preprint, 2013. doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[8]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[9]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.   Google Scholar

[10]

J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.  doi: 10.1088/0951-7715/25/5/1413.  Google Scholar

[11]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[12]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-spcies chemotaxis model, J. Math. Biology, 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.  Google Scholar

[13]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[14]

M. Winkler, Blow-up on a higher-dimensional chemotaxis system deapite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[15]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[16]

M. Winkler, How far can chemotatic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.  Google Scholar

[17]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.  Google Scholar

[18]

C. YangX. CaoZ. Jiang and S. Zheng, Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015), 585-591.  doi: 10.1016/j.jmaa.2015.04.093.  Google Scholar

[1]

Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021

[2]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 203-209. doi: 10.3934/dcdss.2020011

[3]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[4]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[5]

Francesca Romana Guarguaglini, Corrado Mascia, Roberto Natalini, Magali Ribot. Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 39-76. doi: 10.3934/dcdsb.2009.12.39

[6]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

[7]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[8]

Masaaki Mizukami. Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 269-278. doi: 10.3934/dcdss.2020015

[9]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[10]

Rafał Celiński, Andrzej Raczyński. Asymptotic profile of solutions to a certain chemotaxis system. Communications on Pure & Applied Analysis, 2020, 19 (2) : 911-922. doi: 10.3934/cpaa.2020041

[11]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

[12]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

[13]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[14]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[15]

Doan Duy Hai, Atsushi Yagi. Longtime behavior of solutions to chemotaxis-proliferation model with three variables. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3957-3974. doi: 10.3934/dcds.2012.32.3957

[16]

Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041

[17]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[18]

Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779

[19]

Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

[20]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (34)
  • HTML views (28)
  • Cited by (0)

Other articles
by authors

[Back to Top]