The fully parabolic Keller-Segel system with logistic source
$\begin{equation} \left\{ \begin{array}{llc} \displaystyle u_t=\Delta u-\chi\nabla\cdot(u\nabla v)+\kappa u-\mu u^2, &(x,t)\in \Omega\times (0,T),\\ \displaystyle \tau v_t=\Delta v-v+u, &(x,t)\in\Omega\times (0,T), \end{array} \right.(\star) \end{equation}$
is considered in a bounded domain $\Omega\subset\mathbb{R}^N$ ($N≥ 1$) under Neumann boundary conditions, where $κ∈\mathbb{R}$, $μ>0$, $χ>0$ and $τ>0$. It is shown that if the ratio $\frac{χ}{μ}$ is sufficiently small, then any global classical solution $(u, v)$ converges to the spatially homogenous steady state $(\frac{κ_+}{μ}, \frac{κ_+}{μ})$ in the large time limit. Here we use an approach based on maximal Sobolev regularity and thus remove the restrictions $τ=1$ and the convexity of $\Omega$ required in [
Citation: |
X. Bai
and M. Winkler
, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016)
, 553-583.
doi: 10.1512/iumj.2016.65.5776.![]() ![]() ![]() |
|
T. Black, J. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA Journal of Applied Mathematics, 81 (2016), 860-876, arXiv: 1604.03529, 2016.
doi: 10.1093/imamat/hxw036.![]() ![]() ![]() |
|
X. Cao
, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015)
, 1891-1904.
doi: 10.3934/dcds.2015.35.1891.![]() ![]() ![]() |
|
X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model Z. Angew. Math. Phys. , 67 (2016), Art. 11, 13 pp.
doi: 10.1007/s00033-015-0601-3.![]() ![]() ![]() |
|
X. Cao and M. Winkler, Sharp decay estimates in a bioconvection model with quardratic degradation in bounded domains, preprint, 2016.
![]() |
|
J. Lankeit
, Chemotaxis can prevent thresholds on population density, Discrete and Continuous Dynamical Systems-B, 20 (2015)
, 1499-1527.
doi: 10.3934/dcdsb.2015.20.1499.![]() ![]() ![]() |
|
N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system preprint, 2013.
doi: 10.1016/j.matpur.2013.01.020.![]() ![]() ![]() |
|
J. I. Tello
and M. Winkler
, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007)
, 849-877.
doi: 10.1080/03605300701319003.![]() ![]() ![]() |
|
M. Winkler
, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013)
, 748-767.
![]() |
|
J. I. Tello
and M. Winkler
, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012)
, 1413-1425.
doi: 10.1088/0951-7715/25/5/1413.![]() ![]() ![]() |
|
K. Osaki
, T. Tsujikawa
, A. Yagi
and M. Mimura
, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002)
, 119-144.
doi: 10.1016/S0362-546X(01)00815-X.![]() ![]() ![]() |
|
C. Stinner
, J. I. Tello
and M. Winkler
, Competitive exclusion in a two-spcies chemotaxis model, J. Math. Biology, 68 (2014)
, 1607-1626.
doi: 10.1007/s00285-013-0681-7.![]() ![]() ![]() |
|
M. Winkler
, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010)
, 1516-1537.
doi: 10.1080/03605300903473426.![]() ![]() ![]() |
|
M. Winkler
, Blow-up on a higher-dimensional chemotaxis system deapite logistic growth restriction, J. Math. Anal. Appl., 384 (2011)
, 261-272.
doi: 10.1016/j.jmaa.2011.05.057.![]() ![]() ![]() |
|
M. Winkler
, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010)
, 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
|
M. Winkler
, How far can chemotatic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014)
, 809-855.
doi: 10.1007/s00332-014-9205-x.![]() ![]() ![]() |
|
M. Winkler
, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with logistic dampening, J. Differential Equations, 257 (2014)
, 1056-1077.
doi: 10.1016/j.jde.2014.04.023.![]() ![]() ![]() |
|
C. Yang
, X. Cao
, Z. Jiang
and S. Zheng
, Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015)
, 585-591.
doi: 10.1016/j.jmaa.2015.04.093.![]() ![]() ![]() |