In this paper, for non-autonomous RDS we study cocycle attractors with autonomous attraction universes, i.e. pullback attracting some autonomous random sets, instead of non-autonomous ones. We first compare cocycle attractors with autonomous and non-autonomous attraction universes, and then for autonomous ones we establish some existence criteria and characterization. We also study for cocycle attractors the continuity of sections indexed by non-autonomous symbols to find that the upper semi-continuity is equivalent to uniform compactness of the attractor, while the lower semi-continuity is equivalent to an equi-attracting property under some conditions. Finally, we apply these theoretical results to 2D Navier-Stokes equation with additive white noise and translation bounded non-autonomous forcing.
Citation: |
L. Arnold,
Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
|
A. C. N. Carvalho, J. A. Langa and J. C. Robinson,
Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, volume 182, Springer, 2013.
doi: 10.1007/978-1-4614-4581-4.![]() ![]() ![]() |
|
V. V. Chepyzhov and M. I. Vishik,
Attractors for Equations of Mathematical Physics, volume 49. American Mathematical Society Providence, RI, USA, 2002.
![]() ![]() |
|
M. Coti Zelati
and P. Kalita
, Minimality properties of set-valued processes and their pullback attractors, SIAM Journal on Mathematical Analysis, 47 (2015)
, 1530-1561.
doi: 10.1137/140978995.![]() ![]() ![]() |
|
H. Crauel
, Global random attractors are uniquely determined by attracting deterministic compact sets, Annali di Matematica pura ed applicata, 176 (1999)
, 57-72.
doi: 10.1007/BF02505989.![]() ![]() ![]() |
|
H. Crauel,
Random Probability Measures on Polish Spaces, volume 11. CRC press, 2003.
![]() |
|
H. Crauel
, A. Debussche
and F. Flandoli
, Random attractors, Journal of Dynamics and Differential Equations, 9 (1997)
, 307-341.
doi: 10.1007/BF02219225.![]() ![]() ![]() |
|
H. Cui
and J. A. Langa
, Uniform attractors for non-autonomous random dynamical systems, Journal of Differential Equations, 263 (2017)
, 1225-1268.
doi: 10.1016/j.jde.2017.03.018.![]() ![]() |
|
H. Cui
, J. A. Langa
and Y. Li
, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Analysis: Theory, Methods & Applications, 140 (2016)
, 208-235.
doi: 10.1016/j.na.2016.03.012.![]() ![]() ![]() |
|
H. Cui, J. A. Langa, Y. Li and J. Valero, Attractors for multi-valued non-autonomous dynamical systems: Relationship, characterization and robustness, Set-Valued and Variational Analysis, page in press, (2016), 1-38.
doi: 10.1007/s11228-016-0395-2.![]() ![]() |
|
J. García-Luengo
, P. Marín-Rubio
and J. Real
, Pullback attractors for three-dimensional non-autonomous navier-stokes-voigt equations, Nonlinearity, 25 (2012)
, 905-930.
doi: 10.1088/0951-7715/25/4/905.![]() ![]() ![]() |
|
P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 463 (2007), 163-181.
doi: 10.1098/rspa.2006.1753.![]() ![]() ![]() |
|
P. E. Kloeden and M. Rasmussen,
Nonautonomous Dynamical Systems, Number 176, American Mathematical Soc. , 2011.
doi: 10.1090/surv/176.![]() ![]() ![]() |
|
D. Li
and P. Kloeden
, Equi-attraction and the continuous dependence of attractors on parameters, Glasgow Mathematical Journal, 46 (2004)
, 131-141.
doi: 10.1017/S0017089503001605.![]() ![]() ![]() |
|
D. Li
and P. Kloeden
, Equi-attraction and the continuous dependence of pullback attractors on parameters, Stochastics and Dynamics, 4 (2004)
, 373-384.
doi: 10.1142/S0219493704001061.![]() ![]() ![]() |
|
D. Li
and P. Kloeden
, Equi-attraction and continuous dependence of strong attractors of set-valued dynamical systems on parameters, Set-Valued Analysis, 13 (2005)
, 405-416.
doi: 10.1007/s11228-005-2971-8.![]() ![]() ![]() |
|
Q. Ma
, S. Wang
and C. Zhong
, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal, 51 (2002)
, 1541-1559.
doi: 10.1512/iumj.2002.51.2255.![]() ![]() ![]() |
|
P. Marín-Rubio
and J. Real
, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009)
, 3956-3963.
doi: 10.1016/j.na.2009.02.065.![]() ![]() ![]() |
|
R. Temam,
Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 2nd edition, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
|
B. Wang
, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, Journal of Differential Equations, 253 (2012)
, 1544-1583.
doi: 10.1016/j.jde.2012.05.015.![]() ![]() ![]() |
|
B. Wang
, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems, 34 (2014)
, 269-300.
doi: 10.3934/dcds.2014.34.269.![]() ![]() ![]() |