\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On random cocycle attractors with autonomous attraction universes

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, for non-autonomous RDS we study cocycle attractors with autonomous attraction universes, i.e. pullback attracting some autonomous random sets, instead of non-autonomous ones. We first compare cocycle attractors with autonomous and non-autonomous attraction universes, and then for autonomous ones we establish some existence criteria and characterization. We also study for cocycle attractors the continuity of sections indexed by non-autonomous symbols to find that the upper semi-continuity is equivalent to uniform compactness of the attractor, while the lower semi-continuity is equivalent to an equi-attracting property under some conditions. Finally, we apply these theoretical results to 2D Navier-Stokes equation with additive white noise and translation bounded non-autonomous forcing.

    Mathematics Subject Classification: Primary:35B40;Secondary:35B41, 37H05, 37H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.
      A. C. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, volume 182, Springer, 2013. doi: 10.1007/978-1-4614-4581-4.
      V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, volume 49. American Mathematical Society Providence, RI, USA, 2002.
      M. Coti Zelati  and  P. Kalita , Minimality properties of set-valued processes and their pullback attractors, SIAM Journal on Mathematical Analysis, 47 (2015) , 1530-1561.  doi: 10.1137/140978995.
      H. Crauel , Global random attractors are uniquely determined by attracting deterministic compact sets, Annali di Matematica pura ed applicata, 176 (1999) , 57-72.  doi: 10.1007/BF02505989.
      H. Crauel, Random Probability Measures on Polish Spaces, volume 11. CRC press, 2003.
      H. Crauel , A. Debussche  and  F. Flandoli , Random attractors, Journal of Dynamics and Differential Equations, 9 (1997) , 307-341.  doi: 10.1007/BF02219225.
      H. Cui  and  J. A. Langa , Uniform attractors for non-autonomous random dynamical systems, Journal of Differential Equations, 263 (2017) , 1225-1268.  doi: 10.1016/j.jde.2017.03.018.
      H. Cui , J. A. Langa  and  Y. Li , Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Analysis: Theory, Methods & Applications, 140 (2016) , 208-235.  doi: 10.1016/j.na.2016.03.012.
      H. Cui, J. A. Langa, Y. Li and J. Valero, Attractors for multi-valued non-autonomous dynamical systems: Relationship, characterization and robustness, Set-Valued and Variational Analysis, page in press, (2016), 1-38. doi: 10.1007/s11228-016-0395-2.
      J. García-Luengo , P. Marín-Rubio  and  J. Real , Pullback attractors for three-dimensional non-autonomous navier-stokes-voigt equations, Nonlinearity, 25 (2012) , 905-930.  doi: 10.1088/0951-7715/25/4/905.
      P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753.
      P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Number 176, American Mathematical Soc. , 2011. doi: 10.1090/surv/176.
      D. Li  and  P. Kloeden , Equi-attraction and the continuous dependence of attractors on parameters, Glasgow Mathematical Journal, 46 (2004) , 131-141.  doi: 10.1017/S0017089503001605.
      D. Li  and  P. Kloeden , Equi-attraction and the continuous dependence of pullback attractors on parameters, Stochastics and Dynamics, 4 (2004) , 373-384.  doi: 10.1142/S0219493704001061.
      D. Li  and  P. Kloeden , Equi-attraction and continuous dependence of strong attractors of set-valued dynamical systems on parameters, Set-Valued Analysis, 13 (2005) , 405-416.  doi: 10.1007/s11228-005-2971-8.
      Q. Ma , S. Wang  and  C. Zhong , Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal, 51 (2002) , 1541-1559.  doi: 10.1512/iumj.2002.51.2255.
      P. Marín-Rubio  and  J. Real , On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009) , 3956-3963.  doi: 10.1016/j.na.2009.02.065.
      R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 2nd edition, 1997. doi: 10.1007/978-1-4612-0645-3.
      B. Wang , Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, Journal of Differential Equations, 253 (2012) , 1544-1583.  doi: 10.1016/j.jde.2012.05.015.
      B. Wang , Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems, 34 (2014) , 269-300.  doi: 10.3934/dcds.2014.34.269.
  • 加载中
SHARE

Article Metrics

HTML views(1350) PDF downloads(119) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return