
-
Previous Article
Impact of spatially heterogeneous temperature on the dynamics of dengue epidemics
- DCDS-B Home
- This Issue
-
Next Article
A period doubling route to spatiotemporal chaos in a system of Ginzburg-Landau equations for nematic electroconvection
Predicting and estimating probability density functions of chaotic systems
1. | Dept. of mathematics & Statistics, University of Missouri-Kansas City, 5100 Rockhill Rd, Kansas City, MO 64110, USA |
2. | Dept. of Mathematics & Statistics, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, Canada H3G 1M8 |
In the present work, for the first time, we employ Ulam's method to estimate and to predict the existence of the probability density functions of single species populations with chaotic dynamics. In particular, given a chaotic map, we show that Ulam's method generates a sequence of density functions in L1-space that may converge weakly to a function in L1-space. In such a case we show that the limiting function generates an absolutely continuous (w.r.t. the Lebesgue measure) invariant measure (w.r.t. the given chaotic map) and therefore the limiting function is the probability density function of the chaotic map. This fact can be used to determine the existence and estimate the probability density functions of chaotic biological systems.
References:
[1] |
K. Alligood, T. Sauer and J. Yorke, Chaos: An Introduction to Dynamical Systems Springer-Verlag, New York, 1996.
doi: 10. 1007/978-3-642-59281-2. |
[2] |
M. Anazawa,
Bottom-up derivation of discrete-time population models with the Allee effect, Theoretical Population Biology, 75 (2009), 56-67.
doi: 10.1016/j.tpb.2008.11.001. |
[3] |
L. Becks, F. M. Hilker, H. Malchow, K. Jürgens and H. Arndt,
Experimental demonstration of chaos in a microbial food web, Nature, 435 (2005), 1226-1229.
doi: 10.1038/nature03627. |
[4] |
A. Boyarskyand and P. Góra, Laws of Chaos Birkhauser, Boston, 1997.
doi: 10. 1007/978-1-4612-2024-4. |
[5] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology Texts in Applied Mathematics, 2012.
doi: 10. 1007/978-1-4614-1686-9. |
[6] |
C. Castillo-Chavez and A. Yakubu,
Epidemics on Attractors, Contemporary Mathematics, 284 (2001), 23-42.
doi: 10.1090/conm/284/04697. |
[7] |
B. Cipra, Beetlemania: Chaos in ecology, in What's happening in the mathematical sciences 1998-1999 (ed. P. Zorn), Volume 4, American Mathematical Society, Providence, Rhode Island, USA (1999), 72-81. Google Scholar |
[8] |
R. F. Costantino, R. A. Desharnais, J. M. Cushing and B. Dennis,
Chaotic dynamics in an insect population, Science, 275 (1997), 389-391.
doi: 10.1126/science.275.5298.389. |
[9] |
C. Dellacherie and P. A. Meyer, Probabilities and Potential, North-Holland Pub. Co. , N. Y. , 1978, (Chapter Ⅱ, Theorem T25). Google Scholar |
[10] |
B. Dennis, R. A. Desharnais, J. M. Cushing, S. M. Henson and R. F. Costantino, Estimating chaos and complex dynamics in an insect population, Ecological Monographs, 71 (2001), 277-303. Google Scholar |
[11] |
R. A. Desharnais, R. F. Costantino, J. M. Cushing and B. Dennis, Estimating chaos in an insect population, Science, 276 (1997), 1881-1882. Google Scholar |
[12] |
W. Falck, O. N. Bjornstad and N. C. Stenseth,
Voles and lemmings: Chaos and uncertainty in fluctuating populations, Proceedings of the Royal Society of London B, 262 (1995), 363-370.
doi: 10.1098/rspb.1995.0218. |
[13] |
H. C. J. Godfray and S. P. Blythe, Complex dynamics in multispecies communities, Philosophical Transactions of the Royal Society of London B, 330 (1990), 221-233. Google Scholar |
[14] |
C. Godfray and M. Hassell,
Chaotic beetles, Science, 275 (1997), 323-324.
doi: 10.1126/science.275.5298.323. |
[15] |
I. Hanski, P. Turchin, E. Korpimaki and H. Henttonen,
Population oscillations of boreal rodents: Regulation by mustelid predators leads to chaos, Nature, 364 (1993), 232-235.
doi: 10.1038/364232a0. |
[16] |
M. P. Hassell, H. N. Comins and R. M. May,
Spatial structure and chaos in insect population dynamics, Nature, 353 (1991), 255-258.
doi: 10.1038/353255a0. |
[17] |
H. Henttonen and I. Hanski, Population dynamics of small rodents in northern Fennoscandia, in Chaos in real data: The analysis of non-linear dynamics from short ecological time series (ed. J. N. Perry, R. H. Smith, I. P. Woiwod and D. R. Morse), Kluwer Academic, Dordrecht, The Netherlands, (2000), 73-96.
doi: 10. 1007/978-94-011-4010-2_4. |
[18] |
M. V. Jakobson,
Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Communications in Mathematical Physics, 81 (1981), 39-88.
doi: 10.1007/BF01941800. |
[19] |
M. Jakobson,
Piecewise smooth maps with absolutely continuous invariant measures and uniformly scaled Markov partitions, Proceedings of Symposia in Pure Mathematics, 69 (2001), 825-881.
doi: 10.1090/pspum/069/1858558. |
[20] |
P. Kareiva,
Predicting and producing chaos, Nature, 375 (1995), 189-190.
doi: 10.1038/375189a0. |
[21] |
G. Keller and T. Nowicki,
Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Communications in Mathematical Physics, 149 (1992), 31-69.
doi: 10.1007/BF02096623. |
[22] |
B. E. Kendall, C. J. Briggs, W. W. Murdoch, P. Turchin, S. P. Ellner, E. McCauley, R. M. Nisbet and S. N. Wood, Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches, Ecology, 80 (1999), 1789-1805. Google Scholar |
[23] |
A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise Springer-Verlag, New York, 1994, Chapter V, page 87.
doi: 10. 1007/978-1-4612-4286-4. |
[24] |
T. Y. Li,
Finite approximation for the Frobenius-Perron operator, a solution to Ulam's conjecture, Journal of Approximation Theory, 17 (1976), 177-186.
doi: 10.1016/0021-9045(76)90037-X. |
[25] |
J. A. Logan and F. P. Hain (eds. ), Chaos and Insect Ecology Virginia Experiment Station Information Series, 91-3, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA, 1991. Google Scholar |
[26] |
S. Luzzatto and H. Takahasi,
Computable conditions for the occurrence of non-uniform hyperbolicity in families of one-dimensional maps, Nonlinearity, 19 (2006), 1657-1695.
doi: 10.1088/0951-7715/19/7/013. |
[27] |
W. de Melo and S. van Strien, One-dimensional Dynamics in Ergebnisse der Mathematik und ihrer Grenzgebiete Volume 3, Springer-Verlag, Berlin, 1993, Chapter V, section 6.
doi: 10. 1007/978-3-642-78043-1. |
[28] |
M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Institute Hautes Etudes Sci. Publ. Math., 53 (1981), 17-51. Google Scholar |
[29] |
R. M. Nisbet and W. S. C. Gurney, Modelling fluctuating populations, Wiley, 1982,285-308. Google Scholar |
[30] |
T. Nowicki, Some dynamical properties of S-unimodal maps, Fundamenta. Mathematicae, 142 (1993), 45-57. Google Scholar |
[31] |
T. Nowicki and S. van Strien, Nonhyperbolicity and invariant measures for unimodal maps, Ann. Inst. H. Poincare Phys. Theor., 53 (1990), 427-429. Google Scholar |
[32] |
L. Oksanen and T. Oksanen,
Long-term microtine dynamics in north Fennoscandian tundra: The vole cycle and lemming chaos, Ecography, 15 (1992), 226-236.
doi: 10.1111/j.1600-0587.1992.tb00029.x. |
[33] |
L. F. Olsen, G. L. Truty and W. M. Schaffer,
Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark, Theoretical Population Biology, 33 (1988), 344-370.
doi: 10.1016/0040-5809(88)90019-6. |
[34] |
L. F. Olsen and W. M. Schaffer, Chaos vs. noisy periodicity: Alternative hypotheses for childhood epidemics, Science, 249 (1990), 499-504. Google Scholar |
[35] |
E. Renshaw,
Chaos in biometry, IMA Journal of Mathematics Applied in Medicine and Biology, 11 (1994), 17-44.
doi: 10.1093/imammb/11.1.17. |
[36] |
P. Rohani and D. J. D. Earn, Chaos in a cup of flour Trends in Ecology and Evolution 12 (1997), p171.
doi: 10. 1016/S0169-5347(97)01055-0. |
[37] |
M. R. Rychlik,
Another proof of Jakobson's theorem and related results, Ergodic Theory and Dynamical Systems, 8 (1988), 93-109.
doi: 10.1017/S014338570000434X. |
[38] |
S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology and Chemistry, Perseus Publishing, 2001. Google Scholar |
[39] |
P. Turchin,
Chaos and stability in rodent population dynamics: evidence from nonlinear time-series analysis, Oikos, 68 (1993), 167-172.
doi: 10.2307/3545323. |
[40] |
P. Turchin,
Chaos in microtine populations, Proceedings of the Royal Society of London B, 262 (1995), 357-361.
doi: 10.1098/rspb.1995.0217. |
[41] |
P. Turchin and S. P. Ellner, Living on the edge of chaos: Population dynamics of Fennoscandian voles, Ecology, 81 (2000), 3099-3116. Google Scholar |
[42] |
S. M. Ulam, Problems in Modern Mathematics, Interscience, New York, 1964. |
[43] |
S. N. Wood,
Statistical inference for noisy nonlinear ecological dynamic systems, Nature, 466 (2010), 1102-1104.
doi: 10.1038/nature09319. |
[44] |
J. -C. Yoccoz, A Proof of Jakobson's Theorem https://matheuscmss.wordpress.com/category/mathematics/expository/. Google Scholar |
[45] |
C. Zimmer,
Life after chaos, Science, 284 (1999), 83-86.
|
show all references
References:
[1] |
K. Alligood, T. Sauer and J. Yorke, Chaos: An Introduction to Dynamical Systems Springer-Verlag, New York, 1996.
doi: 10. 1007/978-3-642-59281-2. |
[2] |
M. Anazawa,
Bottom-up derivation of discrete-time population models with the Allee effect, Theoretical Population Biology, 75 (2009), 56-67.
doi: 10.1016/j.tpb.2008.11.001. |
[3] |
L. Becks, F. M. Hilker, H. Malchow, K. Jürgens and H. Arndt,
Experimental demonstration of chaos in a microbial food web, Nature, 435 (2005), 1226-1229.
doi: 10.1038/nature03627. |
[4] |
A. Boyarskyand and P. Góra, Laws of Chaos Birkhauser, Boston, 1997.
doi: 10. 1007/978-1-4612-2024-4. |
[5] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology Texts in Applied Mathematics, 2012.
doi: 10. 1007/978-1-4614-1686-9. |
[6] |
C. Castillo-Chavez and A. Yakubu,
Epidemics on Attractors, Contemporary Mathematics, 284 (2001), 23-42.
doi: 10.1090/conm/284/04697. |
[7] |
B. Cipra, Beetlemania: Chaos in ecology, in What's happening in the mathematical sciences 1998-1999 (ed. P. Zorn), Volume 4, American Mathematical Society, Providence, Rhode Island, USA (1999), 72-81. Google Scholar |
[8] |
R. F. Costantino, R. A. Desharnais, J. M. Cushing and B. Dennis,
Chaotic dynamics in an insect population, Science, 275 (1997), 389-391.
doi: 10.1126/science.275.5298.389. |
[9] |
C. Dellacherie and P. A. Meyer, Probabilities and Potential, North-Holland Pub. Co. , N. Y. , 1978, (Chapter Ⅱ, Theorem T25). Google Scholar |
[10] |
B. Dennis, R. A. Desharnais, J. M. Cushing, S. M. Henson and R. F. Costantino, Estimating chaos and complex dynamics in an insect population, Ecological Monographs, 71 (2001), 277-303. Google Scholar |
[11] |
R. A. Desharnais, R. F. Costantino, J. M. Cushing and B. Dennis, Estimating chaos in an insect population, Science, 276 (1997), 1881-1882. Google Scholar |
[12] |
W. Falck, O. N. Bjornstad and N. C. Stenseth,
Voles and lemmings: Chaos and uncertainty in fluctuating populations, Proceedings of the Royal Society of London B, 262 (1995), 363-370.
doi: 10.1098/rspb.1995.0218. |
[13] |
H. C. J. Godfray and S. P. Blythe, Complex dynamics in multispecies communities, Philosophical Transactions of the Royal Society of London B, 330 (1990), 221-233. Google Scholar |
[14] |
C. Godfray and M. Hassell,
Chaotic beetles, Science, 275 (1997), 323-324.
doi: 10.1126/science.275.5298.323. |
[15] |
I. Hanski, P. Turchin, E. Korpimaki and H. Henttonen,
Population oscillations of boreal rodents: Regulation by mustelid predators leads to chaos, Nature, 364 (1993), 232-235.
doi: 10.1038/364232a0. |
[16] |
M. P. Hassell, H. N. Comins and R. M. May,
Spatial structure and chaos in insect population dynamics, Nature, 353 (1991), 255-258.
doi: 10.1038/353255a0. |
[17] |
H. Henttonen and I. Hanski, Population dynamics of small rodents in northern Fennoscandia, in Chaos in real data: The analysis of non-linear dynamics from short ecological time series (ed. J. N. Perry, R. H. Smith, I. P. Woiwod and D. R. Morse), Kluwer Academic, Dordrecht, The Netherlands, (2000), 73-96.
doi: 10. 1007/978-94-011-4010-2_4. |
[18] |
M. V. Jakobson,
Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Communications in Mathematical Physics, 81 (1981), 39-88.
doi: 10.1007/BF01941800. |
[19] |
M. Jakobson,
Piecewise smooth maps with absolutely continuous invariant measures and uniformly scaled Markov partitions, Proceedings of Symposia in Pure Mathematics, 69 (2001), 825-881.
doi: 10.1090/pspum/069/1858558. |
[20] |
P. Kareiva,
Predicting and producing chaos, Nature, 375 (1995), 189-190.
doi: 10.1038/375189a0. |
[21] |
G. Keller and T. Nowicki,
Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Communications in Mathematical Physics, 149 (1992), 31-69.
doi: 10.1007/BF02096623. |
[22] |
B. E. Kendall, C. J. Briggs, W. W. Murdoch, P. Turchin, S. P. Ellner, E. McCauley, R. M. Nisbet and S. N. Wood, Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches, Ecology, 80 (1999), 1789-1805. Google Scholar |
[23] |
A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise Springer-Verlag, New York, 1994, Chapter V, page 87.
doi: 10. 1007/978-1-4612-4286-4. |
[24] |
T. Y. Li,
Finite approximation for the Frobenius-Perron operator, a solution to Ulam's conjecture, Journal of Approximation Theory, 17 (1976), 177-186.
doi: 10.1016/0021-9045(76)90037-X. |
[25] |
J. A. Logan and F. P. Hain (eds. ), Chaos and Insect Ecology Virginia Experiment Station Information Series, 91-3, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA, 1991. Google Scholar |
[26] |
S. Luzzatto and H. Takahasi,
Computable conditions for the occurrence of non-uniform hyperbolicity in families of one-dimensional maps, Nonlinearity, 19 (2006), 1657-1695.
doi: 10.1088/0951-7715/19/7/013. |
[27] |
W. de Melo and S. van Strien, One-dimensional Dynamics in Ergebnisse der Mathematik und ihrer Grenzgebiete Volume 3, Springer-Verlag, Berlin, 1993, Chapter V, section 6.
doi: 10. 1007/978-3-642-78043-1. |
[28] |
M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Institute Hautes Etudes Sci. Publ. Math., 53 (1981), 17-51. Google Scholar |
[29] |
R. M. Nisbet and W. S. C. Gurney, Modelling fluctuating populations, Wiley, 1982,285-308. Google Scholar |
[30] |
T. Nowicki, Some dynamical properties of S-unimodal maps, Fundamenta. Mathematicae, 142 (1993), 45-57. Google Scholar |
[31] |
T. Nowicki and S. van Strien, Nonhyperbolicity and invariant measures for unimodal maps, Ann. Inst. H. Poincare Phys. Theor., 53 (1990), 427-429. Google Scholar |
[32] |
L. Oksanen and T. Oksanen,
Long-term microtine dynamics in north Fennoscandian tundra: The vole cycle and lemming chaos, Ecography, 15 (1992), 226-236.
doi: 10.1111/j.1600-0587.1992.tb00029.x. |
[33] |
L. F. Olsen, G. L. Truty and W. M. Schaffer,
Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark, Theoretical Population Biology, 33 (1988), 344-370.
doi: 10.1016/0040-5809(88)90019-6. |
[34] |
L. F. Olsen and W. M. Schaffer, Chaos vs. noisy periodicity: Alternative hypotheses for childhood epidemics, Science, 249 (1990), 499-504. Google Scholar |
[35] |
E. Renshaw,
Chaos in biometry, IMA Journal of Mathematics Applied in Medicine and Biology, 11 (1994), 17-44.
doi: 10.1093/imammb/11.1.17. |
[36] |
P. Rohani and D. J. D. Earn, Chaos in a cup of flour Trends in Ecology and Evolution 12 (1997), p171.
doi: 10. 1016/S0169-5347(97)01055-0. |
[37] |
M. R. Rychlik,
Another proof of Jakobson's theorem and related results, Ergodic Theory and Dynamical Systems, 8 (1988), 93-109.
doi: 10.1017/S014338570000434X. |
[38] |
S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology and Chemistry, Perseus Publishing, 2001. Google Scholar |
[39] |
P. Turchin,
Chaos and stability in rodent population dynamics: evidence from nonlinear time-series analysis, Oikos, 68 (1993), 167-172.
doi: 10.2307/3545323. |
[40] |
P. Turchin,
Chaos in microtine populations, Proceedings of the Royal Society of London B, 262 (1995), 357-361.
doi: 10.1098/rspb.1995.0217. |
[41] |
P. Turchin and S. P. Ellner, Living on the edge of chaos: Population dynamics of Fennoscandian voles, Ecology, 81 (2000), 3099-3116. Google Scholar |
[42] |
S. M. Ulam, Problems in Modern Mathematics, Interscience, New York, 1964. |
[43] |
S. N. Wood,
Statistical inference for noisy nonlinear ecological dynamic systems, Nature, 466 (2010), 1102-1104.
doi: 10.1038/nature09319. |
[44] |
J. -C. Yoccoz, A Proof of Jakobson's Theorem https://matheuscmss.wordpress.com/category/mathematics/expository/. Google Scholar |
[45] |
C. Zimmer,
Life after chaos, Science, 284 (1999), 83-86.
|








|
|
maximum values of |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
maximum values of |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1st peak value of |
2nd peak value of |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1st peak value of |
2nd peak value of |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The 1st peak values | The 2nd peak values |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The 1st peak values | The 2nd peak values |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The 3rd peak values | The 4th peak values | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The 3rd peak values | The 4th peak values | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The 5th peak values | The 6th peak values | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The 5th peak values | The 6th peak values | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s |
|
|
|
|
|
|
|
|
|
|
s |
|
|
|
|
|
|
|
|
[1] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[2] |
Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 |
[3] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[4] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[5] |
Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021016 |
[6] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[7] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[8] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[9] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[10] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[11] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[12] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[13] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
[14] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[15] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[16] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[17] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[18] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[19] |
Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056 |
[20] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020353 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]