In this paper we study the global boundedness of solutions to the fully parabolic chemotaxis system with singular sensitivity:$u_t=\Delta u-\chi\nabla·(\frac{u}{v}\nabla v)$, $v_t=k\Delta v-v+u$, subject to homogeneous Neumann boundary conditions in a bounded and smooth domain $\Omega\subset\mathbb{R}^{n}$ ($n\ge 2$), where $\chi, \, k>0$. It is shown that the solution is globally bounded provided $0<\chi<\frac{-(k-1)+\sqrt{(k-1)^2+\frac{8k}{n}}}{2}$. This result removes the additional restriction of $n \le 8 $ in Zhao, Zheng [
Citation: |
[1] |
M. Aida, K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Chemotaxis and growth system with singular sensitivity function, Nonlinear Anal. Real World Appl., 6 (2005), 323-336.
doi: 10.1016/j.nonrwa.2004.08.011.![]() ![]() ![]() |
[2] |
P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9 (1999), 347-359.
![]() ![]() |
[3] |
K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.
doi: 10.1016/j.jmaa.2014.11.045.![]() ![]() ![]() |
[4] |
K. Fujie and T. Senba, Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 81-102.
doi: 10.3934/dcdsb.2016.21.81.![]() ![]() ![]() |
[5] |
K. Fujie and T. Senba, Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.
doi: 10.1088/0951-7715/29/8/2417.![]() ![]() ![]() |
[6] |
K. Fujie, M. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56-71.
doi: 10.1016/j.na.2014.06.017.![]() ![]() ![]() |
[7] |
K. Fujie, M. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Methods Appl. sci., 38 (2015), 1212-1224.
doi: 10.1002/mma.3149.![]() ![]() ![]() |
[8] |
K. Fujie and T. Yokota, Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity, Appl. Math. Lett., 38 (2014), 140-143.
doi: 10.1016/j.aml.2014.07.021.![]() ![]() ![]() |
[9] |
E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theoret. Biol., 30 (1971), 235-248.
doi: 10.1016/0022-5193(71)90051-8.![]() ![]() |
[10] |
J. Lankeit, A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.
doi: 10.1002/mma.3489.![]() ![]() ![]() |
[11] |
T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156.
![]() ![]() |
[12] |
C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740.
doi: 10.1016/j.nonrwa.2011.07.006.![]() ![]() ![]() |
[13] |
M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.
doi: 10.1002/mma.1346.![]() ![]() ![]() |
[14] |
P. Zheng, C. Mu, X. Hua and Q. Zhang, Global boundedness in a quasilinear chemotaxis system with signal-dependent sensitivity, J. Math. Anal. Appl., 428 (2015), 508-524.
doi: 10.1016/j.jmaa.2015.03.047.![]() ![]() ![]() |
[15] |
X. Zhao and S. Zheng, Global boundedness of solutions in a parabolic-parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 443 (2016), 445-452.
doi: 10.1016/j.jmaa.2016.05.036.![]() ![]() ![]() |