We consider fractional Navier-Stokes equations in a smooth bound-ed domain $Ω\subset\mathbb{R}^N$, $N≥2$. Following the geometric theory of abstract parabolic problems we give the detailed analysis concerning existence, uniqueness, regularization and continuation properties of the solution. For the original Navier-Stokes problem we construct next global solution of the Leray-Hopf type satisfying also Duhamel's integral formula. Focusing finally on the 3-D model with zero external force we estimate a time after which the latter solution regularizes to strong solution. We also estimate a time such that if a local strong solution exists until that time, then it exists for ever.
Citation: |
H. Amann,
Linear and Quasilinear Parabolic Problems, Volume Ⅰ, Abstract Linear Theory Birkhaüser Verlag, Basel, 1995.
doi: 10.1007/978-3-0348-9221-6.![]() ![]() ![]() |
|
J. Arrieta
and A. N. Carvalho
, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000)
, 285-310.
doi: 10.1090/S0002-9947-99-02528-3.![]() ![]() ![]() |
|
J. M. Ball
, Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Am. Math. Soc., 63 (1977)
, 370-373.
doi: 10.2307/2041821.![]() ![]() ![]() |
|
H. Brezis, Analyse Fonctionelle. Théorie et Applications, Masson, Paris, 1983.
![]() ![]() |
|
L. A. Caffarelli
and A. Vasseur
, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010)
, 1903-1930.
doi: 10.4007/annals.2010.171.1903.![]() ![]() ![]() |
|
A. N. Carvalho
and J. W. Cholewa
, Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl., 310 (2005)
, 557-578.
doi: 10.1016/j.jmaa.2005.02.024.![]() ![]() ![]() |
|
J. W. Cholewa and T. Dlotko,
Global Attractors in Abstract Parabolic Problems Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9780511526404.![]() ![]() ![]() |
|
J. W. Cholewa, C. Quesada and A. Rodriguez-Bernal, Nonlinear evolution equations in scales of Banach spaces and applications to PDEs, preprint.
![]() |
|
T. Dlotko, Navier-Stokes equation and its fractional approximations Appl. Math. Optim. (2016).
doi: 10.1007/s00245-016-9368-y.![]() ![]() |
|
T. Dlotko
, M. B. Kania
and C. Sun
, Quasi-geostrophic equation in R2, J. Differential Equations, 259 (2015)
, 531-561.
doi: 10.1016/j.jde.2015.02.022.![]() ![]() ![]() |
|
C. L. Fefferman, Existence and smoothness of the Navier-Stokes equation http://www.claymath.org/sites/default/files/navierstokes.pdf
![]() |
|
C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511546754.![]() ![]() ![]() |
|
A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
![]() ![]() |
|
H. Fujita
and T. Kato
, On the Navier-Stokes initial value problem I, Arch. Rational Mech. Anal., 16 (1964)
, 269-315.
doi: 10.1007/BF00276188.![]() ![]() ![]() |
|
D. Fujiwara
and H. Morimoto
, An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, 24 (1977)
, 685-700.
![]() ![]() |
|
G. P. Galdi,
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems Springer Monographs in Mathematics, Springer, New York, 2011.
doi: 10.1007/978-0-387-09620-9.![]() ![]() ![]() |
|
Y. Giga
, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., 178 (1981)
, 297-329.
doi: 10.1007/BF01214869.![]() ![]() ![]() |
|
Y. Giga
, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 61 (1986)
, 186-212.
doi: 10.1016/0022-0396(86)90096-3.![]() ![]() |
|
Y. Giga
, Domains of fractional powers of the Stokes operator in Lr spaces, Arch. Rational Mech. Anal., 89 (1985)
, 251-265.
doi: 10.1007/BF00276874.![]() ![]() ![]() |
|
Y. Giga
and T. Miyakawa
, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985)
, 267-281.
doi: 10.1007/BF00276875.![]() ![]() ![]() |
|
B. Guo
, D. Huang
, Q. Li
and C. Sun
, Dynamics for a generalized incompressible Navier-Stokes equations in $\mathbb{R}^2$, Adv. Nonlinear Stud., 16 (2016)
, 249-272.
doi: 10.1515/ans-2015-5018.![]() ![]() ![]() |
|
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
![]() ![]() |
|
A. Inoue
and M. Wakimoto
, On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo, Sec. I, 24 (1977)
, 303-319.
![]() ![]() |
|
T. Kato
and H. Fujita
, On the nonstationary Navier-Stokes system, Rend. Sem. Math. Univ. Padova, 32 (1962)
, 243-260.
![]() ![]() |
|
H. Komatsu
, Fractional powers of operators, Pacific J. Math., 19 (1966)
, 285-346.
doi: 10.2140/pjm.1966.19.285.![]() ![]() ![]() |
|
O. A. Ladyzhenskaya
, On some gaps in two of my papers on the Navier-Stokes equations and the way of closing them, J. Math. Sci., 115 (2003)
, 2789-2891.
![]() ![]() |
|
O. A. Ladyzhenskaya
, On the uniqueness and smoothness of generalized solutions of the Navier-Stokes equations, Zap. Nauchn. Semin. LOMI, (1967)
, 169-185.
![]() |
|
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2 Gordon and Breach, Science Publishers, New York-London-Paris, 1969.
![]() ![]() |
|
J. -L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod Gauthier-Villars, Paris, 1969.
![]() ![]() |
|
J. -L. Lions and E. Magenes, Probl}mes aux Limites non Homogénes et Applications, Vol. Ⅰ, Dunod, Paris 1968.
![]() ![]() |
|
G. Łukaszewicz and P. Kalita,
Navier-Stokes Equations. An Introduction with Applications Advances in Mechanics and Mathematics 34, Springer International Publishing, 2016.
doi: 10.1007/978-3-319-27760-8.![]() ![]() ![]() |
|
C. Martínez Carracedo and M. Sanz Alix,
The Theory of Fractional Powers of Operators Elsevier, Amsterdam, 2001.
![]() ![]() |
|
K. Masuda
, Weak solutions of Navier-Stokes equations, Tôhoku Math. Journ., 36 (1984)
, 623-646.
doi: 10.2748/tmj/1178228767.![]() ![]() ![]() |
|
J. Mattingly
and Y. Sinai
, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equation, Commun. Contemp. Math., 1 (1999)
, 497-516.
doi: 10.1142/S0219199799000183.![]() ![]() ![]() |
|
T. Miyakawa
, On the initial value problem for the Navier-Stokes equations in $L^p$ spaces, Hiroshima Math. J., 11 (1981)
, 9-20.
![]() ![]() |
|
A. Pazy,
Semigroups of Linear Operators and Applications to Partial Differential Equations Springer, Berlin, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
|
G. Prodi
, Un teorema di unicita per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959)
, 173-182.
doi: 10.1007/BF02410664.![]() ![]() ![]() |
|
F. Ribaud
, A remark on the uniqueness problem for the weak solutions of Navier-Stokes equations, Ann. Fac. Sci. Toulouse Math., 11 (2002)
, 225-238.
doi: 10.5802/afst.1024.![]() ![]() ![]() |
|
J. C. Robinson,
Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() ![]() |
|
J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos. , Madison, Wis. , 1962), (1963), 69{98, Univ. of Wisconsin Press, Madison, Wisconsin.
![]() ![]() |
|
J. Simon
, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987)
, 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
|
P. E. Sobolevskii
, On non-stationary equations of hydrodynamics for viscous fluid, Dokl. Akad. Nauk SSSR, 128 (1959)
, 45-48 (in Russian).
![]() ![]() |
|
P. E. Sobolevskii, On equations of parabolic type in a Banach space, Trudy Moskov. Mat. Obsc. , 10 (1961), 297-350 (in Russian); Equations of parabolic type in a Banach space, Amer. Math. Soc. Transl. , 49 (1966), 1{62.
![]() ![]() |
|
H. Sohr,
The Navier-Stokes Equations. An Elementary Functional Analytic Approach Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2001.
doi: 10.1007/978-3-0348-8255-2.![]() ![]() ![]() |
|
W. A. Strauss
, On continuity of functions with values in various Banach spaces, Pacific J. Math., 19 (1966)
, 543-551.
doi: 10.2140/pjm.1966.19.543.![]() ![]() ![]() |
|
R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1979.
![]() ![]() |
|
R. Temam
, On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20 (1975)
, 32-43.
doi: 10.1016/0022-1236(75)90052-X.![]() ![]() ![]() |
|
W. von Wahl,
Equations of Navier-Stokes and Abstract Parabolic Equations Vieweg, Braunschweig/Wiesbaden, 1985.
doi: 10.1007/978-3-663-13911-9.![]() ![]() ![]() |
|
W. von Wahl, Global solutions to evolution equations of parabolic type, in: Differential Equations in Banach Spaces, Proceedings, 1985 (Eds. A. Favini, E. Obrecht), Springer-Verlag, Berlin, 1223 (1986), 254{266
![]() ![]() |
|
F. B. Weissler
, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980)
, 219-230.
doi: 10.1007/BF00280539.![]() ![]() ![]() |
|
J. Wu
, Generalized MHD equations, J. Differential Equations, 195 (2003)
, 284-312.
doi: 10.1016/j.jde.2003.07.007.![]() ![]() ![]() |
|
H. Wu
and J. Fan
, Weak-strong uniqueness for the generalized Navier-Stokes equations, Appl. Math. Lett., 25 (2012)
, 423-428.
doi: 10.1016/j.aml.2011.09.028.![]() ![]() ![]() |