October  2018, 23(8): 2967-2988. doi: 10.3934/dcdsb.2017149

Fractional Navier-Stokes equations

Institute of Mathematics, University of Silesia in Katowice, 40-007 Katowice, Poland

* Corresponding author:Jan W. Cholewa

Received  December 2016 Revised  February 2017 Published  April 2017

Fund Project: J.C. partially supported by grant MTM2012-31298 from Ministerio de Economia y Competividad, Spain; T.D. partially supported by NCN grant DEC-2012/05/B/ST1/00546, Poland.

We consider fractional Navier-Stokes equations in a smooth bound-ed domain $Ω\subset\mathbb{R}^N$, $N≥2$. Following the geometric theory of abstract parabolic problems we give the detailed analysis concerning existence, uniqueness, regularization and continuation properties of the solution. For the original Navier-Stokes problem we construct next global solution of the Leray-Hopf type satisfying also Duhamel's integral formula. Focusing finally on the 3-D model with zero external force we estimate a time after which the latter solution regularizes to strong solution. We also estimate a time such that if a local strong solution exists until that time, then it exists for ever.

Citation: Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149
References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems, Volume Ⅰ, Abstract Linear Theory Birkhaüser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

J. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285-310.  doi: 10.1090/S0002-9947-99-02528-3.  Google Scholar

[3]

J. M. Ball, Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Am. Math. Soc., 63 (1977), 370-373.  doi: 10.2307/2041821.  Google Scholar

[4]

H. Brezis, Analyse Fonctionelle. Théorie et Applications, Masson, Paris, 1983.  Google Scholar

[5]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[6]

A. N. Carvalho and J. W. Cholewa, Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl., 310 (2005), 557-578.  doi: 10.1016/j.jmaa.2005.02.024.  Google Scholar

[7]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.  Google Scholar

[8]

J. W. Cholewa, C. Quesada and A. Rodriguez-Bernal, Nonlinear evolution equations in scales of Banach spaces and applications to PDEs, preprint. Google Scholar

[9]

T. Dlotko, Navier-Stokes equation and its fractional approximations Appl. Math. Optim. (2016). doi: 10.1007/s00245-016-9368-y.  Google Scholar

[10]

T. DlotkoM. B. Kania and C. Sun, Quasi-geostrophic equation in R2, J. Differential Equations, 259 (2015), 531-561.  doi: 10.1016/j.jde.2015.02.022.  Google Scholar

[11]

C. L. Fefferman, Existence and smoothness of the Navier-Stokes equation http://www.claymath.org/sites/default/files/navierstokes.pdf Google Scholar

[12]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754.  Google Scholar

[13]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.  Google Scholar

[14]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Rational Mech. Anal., 16 (1964), 269-315.  doi: 10.1007/BF00276188.  Google Scholar

[15]

D. Fujiwara and H. Morimoto, An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, 24 (1977), 685-700.   Google Scholar

[16]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[17]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., 178 (1981), 297-329.  doi: 10.1007/BF01214869.  Google Scholar

[18]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 61 (1986), 186-212.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[19]

Y. Giga, Domains of fractional powers of the Stokes operator in Lr spaces, Arch. Rational Mech. Anal., 89 (1985), 251-265.  doi: 10.1007/BF00276874.  Google Scholar

[20]

Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.  doi: 10.1007/BF00276875.  Google Scholar

[21]

B. GuoD. HuangQ. Li and C. Sun, Dynamics for a generalized incompressible Navier-Stokes equations in $\mathbb{R}^2$, Adv. Nonlinear Stud., 16 (2016), 249-272.  doi: 10.1515/ans-2015-5018.  Google Scholar

[22]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.  Google Scholar

[23]

A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo, Sec. I, 24 (1977), 303-319.   Google Scholar

[24]

T. Kato and H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. Math. Univ. Padova, 32 (1962), 243-260.   Google Scholar

[25]

H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.  doi: 10.2140/pjm.1966.19.285.  Google Scholar

[26]

O. A. Ladyzhenskaya, On some gaps in two of my papers on the Navier-Stokes equations and the way of closing them, J. Math. Sci., 115 (2003), 2789-2891.   Google Scholar

[27]

O. A. Ladyzhenskaya, On the uniqueness and smoothness of generalized solutions of the Navier-Stokes equations, Zap. Nauchn. Semin. LOMI, (1967), 169-185.   Google Scholar

[28]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2 Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[29]

J. -L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod Gauthier-Villars, Paris, 1969.  Google Scholar

[30]

J. -L. Lions and E. Magenes, Probl}mes aux Limites non Homogénes et Applications, Vol. Ⅰ, Dunod, Paris 1968.  Google Scholar

[31]

G. Łukaszewicz and P. Kalita, Navier-Stokes Equations. An Introduction with Applications Advances in Mechanics and Mathematics 34, Springer International Publishing, 2016. doi: 10.1007/978-3-319-27760-8.  Google Scholar

[32]

C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators Elsevier, Amsterdam, 2001.  Google Scholar

[33]

K. Masuda, Weak solutions of Navier-Stokes equations, Tôhoku Math. Journ., 36 (1984), 623-646.  doi: 10.2748/tmj/1178228767.  Google Scholar

[34]

J. Mattingly and Y. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equation, Commun. Contemp. Math., 1 (1999), 497-516.  doi: 10.1142/S0219199799000183.  Google Scholar

[35]

T. Miyakawa, On the initial value problem for the Navier-Stokes equations in $L^p$ spaces, Hiroshima Math. J., 11 (1981), 9-20.   Google Scholar

[36]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Springer, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[37]

G. Prodi, Un teorema di unicita per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182.  doi: 10.1007/BF02410664.  Google Scholar

[38]

F. Ribaud, A remark on the uniqueness problem for the weak solutions of Navier-Stokes equations, Ann. Fac. Sci. Toulouse Math., 11 (2002), 225-238.  doi: 10.5802/afst.1024.  Google Scholar

[39]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[40]

J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos. , Madison, Wis. , 1962), (1963), 69{98, Univ. of Wisconsin Press, Madison, Wisconsin.  Google Scholar

[41]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[42]

P. E. Sobolevskii, On non-stationary equations of hydrodynamics for viscous fluid, Dokl. Akad. Nauk SSSR, 128 (1959), 45-48 (in Russian).   Google Scholar

[43]

P. E. Sobolevskii, On equations of parabolic type in a Banach space, Trudy Moskov. Mat. Obsc. , 10 (1961), 297-350 (in Russian); Equations of parabolic type in a Banach space, Amer. Math. Soc. Transl. , 49 (1966), 1{62.  Google Scholar

[44]

H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[45]

W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math., 19 (1966), 543-551.  doi: 10.2140/pjm.1966.19.543.  Google Scholar

[46]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1979.  Google Scholar

[47]

R. Temam, On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20 (1975), 32-43.  doi: 10.1016/0022-1236(75)90052-X.  Google Scholar

[48]

W. von Wahl, Equations of Navier-Stokes and Abstract Parabolic Equations Vieweg, Braunschweig/Wiesbaden, 1985. doi: 10.1007/978-3-663-13911-9.  Google Scholar

[49]

W. von Wahl, Global solutions to evolution equations of parabolic type, in: Differential Equations in Banach Spaces, Proceedings, 1985 (Eds. A. Favini, E. Obrecht), Springer-Verlag, Berlin, 1223 (1986), 254{266  Google Scholar

[50]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.  doi: 10.1007/BF00280539.  Google Scholar

[51]

J. Wu, Generalized MHD equations, J. Differential Equations, 195 (2003), 284-312.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

[52]

H. Wu and J. Fan, Weak-strong uniqueness for the generalized Navier-Stokes equations, Appl. Math. Lett., 25 (2012), 423-428.  doi: 10.1016/j.aml.2011.09.028.  Google Scholar

show all references

References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems, Volume Ⅰ, Abstract Linear Theory Birkhaüser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

J. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285-310.  doi: 10.1090/S0002-9947-99-02528-3.  Google Scholar

[3]

J. M. Ball, Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Am. Math. Soc., 63 (1977), 370-373.  doi: 10.2307/2041821.  Google Scholar

[4]

H. Brezis, Analyse Fonctionelle. Théorie et Applications, Masson, Paris, 1983.  Google Scholar

[5]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[6]

A. N. Carvalho and J. W. Cholewa, Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl., 310 (2005), 557-578.  doi: 10.1016/j.jmaa.2005.02.024.  Google Scholar

[7]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.  Google Scholar

[8]

J. W. Cholewa, C. Quesada and A. Rodriguez-Bernal, Nonlinear evolution equations in scales of Banach spaces and applications to PDEs, preprint. Google Scholar

[9]

T. Dlotko, Navier-Stokes equation and its fractional approximations Appl. Math. Optim. (2016). doi: 10.1007/s00245-016-9368-y.  Google Scholar

[10]

T. DlotkoM. B. Kania and C. Sun, Quasi-geostrophic equation in R2, J. Differential Equations, 259 (2015), 531-561.  doi: 10.1016/j.jde.2015.02.022.  Google Scholar

[11]

C. L. Fefferman, Existence and smoothness of the Navier-Stokes equation http://www.claymath.org/sites/default/files/navierstokes.pdf Google Scholar

[12]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754.  Google Scholar

[13]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.  Google Scholar

[14]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Rational Mech. Anal., 16 (1964), 269-315.  doi: 10.1007/BF00276188.  Google Scholar

[15]

D. Fujiwara and H. Morimoto, An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, 24 (1977), 685-700.   Google Scholar

[16]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[17]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., 178 (1981), 297-329.  doi: 10.1007/BF01214869.  Google Scholar

[18]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 61 (1986), 186-212.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[19]

Y. Giga, Domains of fractional powers of the Stokes operator in Lr spaces, Arch. Rational Mech. Anal., 89 (1985), 251-265.  doi: 10.1007/BF00276874.  Google Scholar

[20]

Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.  doi: 10.1007/BF00276875.  Google Scholar

[21]

B. GuoD. HuangQ. Li and C. Sun, Dynamics for a generalized incompressible Navier-Stokes equations in $\mathbb{R}^2$, Adv. Nonlinear Stud., 16 (2016), 249-272.  doi: 10.1515/ans-2015-5018.  Google Scholar

[22]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.  Google Scholar

[23]

A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo, Sec. I, 24 (1977), 303-319.   Google Scholar

[24]

T. Kato and H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. Math. Univ. Padova, 32 (1962), 243-260.   Google Scholar

[25]

H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.  doi: 10.2140/pjm.1966.19.285.  Google Scholar

[26]

O. A. Ladyzhenskaya, On some gaps in two of my papers on the Navier-Stokes equations and the way of closing them, J. Math. Sci., 115 (2003), 2789-2891.   Google Scholar

[27]

O. A. Ladyzhenskaya, On the uniqueness and smoothness of generalized solutions of the Navier-Stokes equations, Zap. Nauchn. Semin. LOMI, (1967), 169-185.   Google Scholar

[28]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2 Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[29]

J. -L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod Gauthier-Villars, Paris, 1969.  Google Scholar

[30]

J. -L. Lions and E. Magenes, Probl}mes aux Limites non Homogénes et Applications, Vol. Ⅰ, Dunod, Paris 1968.  Google Scholar

[31]

G. Łukaszewicz and P. Kalita, Navier-Stokes Equations. An Introduction with Applications Advances in Mechanics and Mathematics 34, Springer International Publishing, 2016. doi: 10.1007/978-3-319-27760-8.  Google Scholar

[32]

C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators Elsevier, Amsterdam, 2001.  Google Scholar

[33]

K. Masuda, Weak solutions of Navier-Stokes equations, Tôhoku Math. Journ., 36 (1984), 623-646.  doi: 10.2748/tmj/1178228767.  Google Scholar

[34]

J. Mattingly and Y. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equation, Commun. Contemp. Math., 1 (1999), 497-516.  doi: 10.1142/S0219199799000183.  Google Scholar

[35]

T. Miyakawa, On the initial value problem for the Navier-Stokes equations in $L^p$ spaces, Hiroshima Math. J., 11 (1981), 9-20.   Google Scholar

[36]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Springer, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[37]

G. Prodi, Un teorema di unicita per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182.  doi: 10.1007/BF02410664.  Google Scholar

[38]

F. Ribaud, A remark on the uniqueness problem for the weak solutions of Navier-Stokes equations, Ann. Fac. Sci. Toulouse Math., 11 (2002), 225-238.  doi: 10.5802/afst.1024.  Google Scholar

[39]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[40]

J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos. , Madison, Wis. , 1962), (1963), 69{98, Univ. of Wisconsin Press, Madison, Wisconsin.  Google Scholar

[41]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[42]

P. E. Sobolevskii, On non-stationary equations of hydrodynamics for viscous fluid, Dokl. Akad. Nauk SSSR, 128 (1959), 45-48 (in Russian).   Google Scholar

[43]

P. E. Sobolevskii, On equations of parabolic type in a Banach space, Trudy Moskov. Mat. Obsc. , 10 (1961), 297-350 (in Russian); Equations of parabolic type in a Banach space, Amer. Math. Soc. Transl. , 49 (1966), 1{62.  Google Scholar

[44]

H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[45]

W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math., 19 (1966), 543-551.  doi: 10.2140/pjm.1966.19.543.  Google Scholar

[46]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1979.  Google Scholar

[47]

R. Temam, On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20 (1975), 32-43.  doi: 10.1016/0022-1236(75)90052-X.  Google Scholar

[48]

W. von Wahl, Equations of Navier-Stokes and Abstract Parabolic Equations Vieweg, Braunschweig/Wiesbaden, 1985. doi: 10.1007/978-3-663-13911-9.  Google Scholar

[49]

W. von Wahl, Global solutions to evolution equations of parabolic type, in: Differential Equations in Banach Spaces, Proceedings, 1985 (Eds. A. Favini, E. Obrecht), Springer-Verlag, Berlin, 1223 (1986), 254{266  Google Scholar

[50]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.  doi: 10.1007/BF00280539.  Google Scholar

[51]

J. Wu, Generalized MHD equations, J. Differential Equations, 195 (2003), 284-312.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

[52]

H. Wu and J. Fan, Weak-strong uniqueness for the generalized Navier-Stokes equations, Appl. Math. Lett., 25 (2012), 423-428.  doi: 10.1016/j.aml.2011.09.028.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[8]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[9]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[10]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[11]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[12]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[15]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[16]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[17]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[18]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[19]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[20]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (439)
  • HTML views (1219)
  • Cited by (2)

Other articles
by authors

[Back to Top]