The existence and uniqueness of solutions satisfying energy equality is proved for non-autonomous FitzHugh-Nagumo system on a special time-varying domain which is a (possibly non-smooth) domain expanding with time. By constructing a suitable penalty function for the two cases respectively, we establish the existence of a pullback attractor for non-autonomous FitzHugh-Nagumo system on a special time-varying domain.
Citation: |
[1] |
S. Bonaccorsi and G. Guatteri, A variational approach to evolution problems with variable domains, J. Differential Equations, 175 (2001), 51-70.
doi: 10.1006/jdeq.2000.3959.![]() ![]() ![]() |
[2] |
H. Crauel, P. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stoch. Dyn., 11 (2011), 301-314.
doi: 10.1142/S0219493711003292.![]() ![]() ![]() |
[3] |
L. Evans,
Partial Differential Equations, Grad. Stud. Math. , Amer. Math. Soc. , 19 Providence, RI, 1998.
![]() ![]() |
[4] |
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1861), 445-466.
doi: 10.1016/S0006-3495(61)86902-6.![]() ![]() |
[5] |
C. He and L. Hsiao, Two-dimensional Euler equations in a time dependent domain, J. Differential Equations, 163 (2000), 265-291.
doi: 10.1006/jdeq.1999.3702.![]() ![]() ![]() |
[6] |
P. Kloeden, José Real and C. Sun, Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential equations, 246 (2009), 4702-4730.
doi: 10.1016/j.jde.2008.11.017.![]() ![]() ![]() |
[7] |
P. Kloeden, P. Maín-Rubio and J. Real, Pullback attractors for a semilinear heat equation in a non-cylindrical domain, J. Differential Equations, 244 (2008), 2062-2090.
doi: 10.1016/j.jde.2007.10.031.![]() ![]() ![]() |
[8] |
J. Límaco, L. A. Medeiros and E. Zuazua, Existence, uniqueness and controllability for parabolic equations in non-cylindrical domains, Mat. Contemp., 23 (2002), 49-70.
![]() ![]() |
[9] |
J. Lions,
Quelques méthodes de Résolution des Problémes aux Limites Non linéaires, Dunod, Paris, 1969.
![]() |
[10] |
W. Liu and B. Wang, Asymptotic behavior of the FitzHugh-Nagumo system, Inter. J. Evolution Equations, 2 (2007), 129-163.
![]() ![]() |
[11] |
Y. Lu and Z. Shao, Determining nodes for partly dissipative reaction systems, Nonlinear Anal, 54 (2003), 873-884.
doi: 10.1016/S0362-546X(03)00112-3.![]() ![]() ![]() |
[12] |
M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems, SIAM J. Math. Anal., 20 (1989), 816-844.
doi: 10.1137/0520057.![]() ![]() ![]() |
[13] |
M. Marion, Inertial manifolds associated to partly dissipative reaction-diffusion systems, J. Math. Anal. Appl., 143 (1989), 295-326.
doi: 10.1016/0022-247X(89)90043-7.![]() ![]() ![]() |
[14] |
J. Nagumo, S. Arimoto and S. Yosimzawa, An active pulse transmission line simulating nerve axon, Proc. J. R. E., 50 (1964), 2061-2070.
doi: 10.1109/JRPROC.1962.288235.![]() ![]() |
[15] |
J. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() ![]() |
[16] |
C. Sun and Y. Yuan, $L^p$-type pullback attractors for a semilinear heat equation on time-varying domains, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1029-1052.
doi: 10.1017/S0308210515000177.![]() ![]() ![]() |
[17] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
[18] |
B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 70 (2009), 3799-3815.
doi: 10.1016/j.na.2008.07.011.![]() ![]() ![]() |