December  2017, 22(10): 3691-3706. doi: 10.3934/dcdsb.2017150

Pullback attractors of FitzHugh-Nagumo system on the time-varying domains

1. 

College of Science, National University of Defense Technology, Changsha 410073, China

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China

* Corresponding author: Jianhua Huang

Received  December 2016 Revised  January 2017 Published  April 2017

Fund Project: The authors are supported by the NSF of China(No.11371367,11571126), the third author is also supported by the Fundamental Research Funds for the Central Universities (106112016CDJZR105501).

The existence and uniqueness of solutions satisfying energy equality is proved for non-autonomous FitzHugh-Nagumo system on a special time-varying domain which is a (possibly non-smooth) domain expanding with time. By constructing a suitable penalty function for the two cases respectively, we establish the existence of a pullback attractor for non-autonomous FitzHugh-Nagumo system on a special time-varying domain.

Citation: Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150
References:
[1]

S. Bonaccorsi and G. Guatteri, A variational approach to evolution problems with variable domains, J. Differential Equations, 175 (2001), 51-70.  doi: 10.1006/jdeq.2000.3959.  Google Scholar

[2]

H. CrauelP. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stoch. Dyn., 11 (2011), 301-314.  doi: 10.1142/S0219493711003292.  Google Scholar

[3]

L. Evans, Partial Differential Equations, Grad. Stud. Math. , Amer. Math. Soc. , 19 Providence, RI, 1998.  Google Scholar

[4]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1861), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[5]

C. He and L. Hsiao, Two-dimensional Euler equations in a time dependent domain, J. Differential Equations, 163 (2000), 265-291.  doi: 10.1006/jdeq.1999.3702.  Google Scholar

[6]

P. KloedenJosé Real and C. Sun, Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential equations, 246 (2009), 4702-4730.  doi: 10.1016/j.jde.2008.11.017.  Google Scholar

[7]

P. KloedenP. Maín-Rubio and J. Real, Pullback attractors for a semilinear heat equation in a non-cylindrical domain, J. Differential Equations, 244 (2008), 2062-2090.  doi: 10.1016/j.jde.2007.10.031.  Google Scholar

[8]

J. LímacoL. A. Medeiros and E. Zuazua, Existence, uniqueness and controllability for parabolic equations in non-cylindrical domains, Mat. Contemp., 23 (2002), 49-70.   Google Scholar

[9]

J. Lions, Quelques méthodes de Résolution des Problémes aux Limites Non linéaires, Dunod, Paris, 1969. Google Scholar

[10]

W. Liu and B. Wang, Asymptotic behavior of the FitzHugh-Nagumo system, Inter. J. Evolution Equations, 2 (2007), 129-163.   Google Scholar

[11]

Y. Lu and Z. Shao, Determining nodes for partly dissipative reaction systems, Nonlinear Anal, 54 (2003), 873-884.  doi: 10.1016/S0362-546X(03)00112-3.  Google Scholar

[12]

M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems, SIAM J. Math. Anal., 20 (1989), 816-844.  doi: 10.1137/0520057.  Google Scholar

[13]

M. Marion, Inertial manifolds associated to partly dissipative reaction-diffusion systems, J. Math. Anal. Appl., 143 (1989), 295-326.  doi: 10.1016/0022-247X(89)90043-7.  Google Scholar

[14]

J. NagumoS. Arimoto and S. Yosimzawa, An active pulse transmission line simulating nerve axon, Proc. J. R. E., 50 (1964), 2061-2070.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[15] J. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[16]

C. Sun and Y. Yuan, $L^p$-type pullback attractors for a semilinear heat equation on time-varying domains, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1029-1052.  doi: 10.1017/S0308210515000177.  Google Scholar

[17] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Springer-Verlag, New York, 1997.  doi: 10.1007/978-1-4612-0645-3.  Google Scholar
[18]

B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 70 (2009), 3799-3815.  doi: 10.1016/j.na.2008.07.011.  Google Scholar

show all references

References:
[1]

S. Bonaccorsi and G. Guatteri, A variational approach to evolution problems with variable domains, J. Differential Equations, 175 (2001), 51-70.  doi: 10.1006/jdeq.2000.3959.  Google Scholar

[2]

H. CrauelP. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stoch. Dyn., 11 (2011), 301-314.  doi: 10.1142/S0219493711003292.  Google Scholar

[3]

L. Evans, Partial Differential Equations, Grad. Stud. Math. , Amer. Math. Soc. , 19 Providence, RI, 1998.  Google Scholar

[4]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1861), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[5]

C. He and L. Hsiao, Two-dimensional Euler equations in a time dependent domain, J. Differential Equations, 163 (2000), 265-291.  doi: 10.1006/jdeq.1999.3702.  Google Scholar

[6]

P. KloedenJosé Real and C. Sun, Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential equations, 246 (2009), 4702-4730.  doi: 10.1016/j.jde.2008.11.017.  Google Scholar

[7]

P. KloedenP. Maín-Rubio and J. Real, Pullback attractors for a semilinear heat equation in a non-cylindrical domain, J. Differential Equations, 244 (2008), 2062-2090.  doi: 10.1016/j.jde.2007.10.031.  Google Scholar

[8]

J. LímacoL. A. Medeiros and E. Zuazua, Existence, uniqueness and controllability for parabolic equations in non-cylindrical domains, Mat. Contemp., 23 (2002), 49-70.   Google Scholar

[9]

J. Lions, Quelques méthodes de Résolution des Problémes aux Limites Non linéaires, Dunod, Paris, 1969. Google Scholar

[10]

W. Liu and B. Wang, Asymptotic behavior of the FitzHugh-Nagumo system, Inter. J. Evolution Equations, 2 (2007), 129-163.   Google Scholar

[11]

Y. Lu and Z. Shao, Determining nodes for partly dissipative reaction systems, Nonlinear Anal, 54 (2003), 873-884.  doi: 10.1016/S0362-546X(03)00112-3.  Google Scholar

[12]

M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems, SIAM J. Math. Anal., 20 (1989), 816-844.  doi: 10.1137/0520057.  Google Scholar

[13]

M. Marion, Inertial manifolds associated to partly dissipative reaction-diffusion systems, J. Math. Anal. Appl., 143 (1989), 295-326.  doi: 10.1016/0022-247X(89)90043-7.  Google Scholar

[14]

J. NagumoS. Arimoto and S. Yosimzawa, An active pulse transmission line simulating nerve axon, Proc. J. R. E., 50 (1964), 2061-2070.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[15] J. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[16]

C. Sun and Y. Yuan, $L^p$-type pullback attractors for a semilinear heat equation on time-varying domains, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1029-1052.  doi: 10.1017/S0308210515000177.  Google Scholar

[17] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Springer-Verlag, New York, 1997.  doi: 10.1007/978-1-4612-0645-3.  Google Scholar
[18]

B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 70 (2009), 3799-3815.  doi: 10.1016/j.na.2008.07.011.  Google Scholar

[1]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[4]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[5]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[6]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[9]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[12]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[13]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[18]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[19]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (55)
  • HTML views (44)
  • Cited by (1)

Other articles
by authors

[Back to Top]