September  2017, 22(7): 2813-2829. doi: 10.3934/dcdsb.2017152

Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling

College of Mathematics, Jilin University, Changchun, Jilin 130012, China

* Corresponding author: Lianzhang Bao

Received  November 2014 Revised  March 2017 Published  May 2017

This work deals with the properties of the traveling wave solutions of a double degenerate cross-diffusion model
$\begin{eqnarray*} \frac{\partial b}{\partial t} & = & D_b\nabla·\{n^pb(1-b)\nabla b\}+ n^qb^l, \\ \frac{\partial n}{\partial t} & = & D_n\nabla^2n-n^qb^l, \end{eqnarray*}$
where
$p≥q 0, q>1, l>1$
. This system accounts for degenerate diffusion at the population density
$n=b=0$
and
$b=1$
modeling the growth of certain bacteria colony with volume filling. The existence of the finite traveling wave solutions is proven which provides partial answers to the spatial patterns of the colony. In order to overcome the difficulty of traditional phase plane analysis on higher dimension, we use Schauder fixed point theorem and shooting arguments in our paper.
Citation: Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152
References:
[1]

K. Anguige, Multi-phase Stefan problems for a non-linear one-dimensional model of cell-to-cell adhesion and diffusion, European J. Appl. Math., 21 (2010), 109-136.  doi: 10.1017/S0956792509990167.  Google Scholar

[2]

K. Anguige, A one-dimensional model for the interaction between cell-to-cell adhesion and chemotactic signalling, European J. Appl. Math., 22 (2011), 291-316.  doi: 10.1017/S0956792511000040.  Google Scholar

[3]

K. Anguige and C. Schmeiser, A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion, J. Math. Biol., 58 (2009), 395-427.  doi: 10.1007/s00285-008-0197-8.  Google Scholar

[4]

L. Bao and Z. Zhou, Traveling wave in backward and forward parabolic equations from population dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1507-1522.  doi: 10.3934/dcdsb.2014.19.1507.  Google Scholar

[5]

J. W. Barrett and K. Deckelnick, Existence, uniquesness and approximation of a doubly-degenerate nonlinear parabolic system modeling bacterial evolution, Math. Models Methods Appl. Sci., 17 (2007), 1095-1127.  doi: 10.1142/S0218202507002212.  Google Scholar

[6]

H. BerestyckiG. NadinB. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[7]

E. O. Burdene and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli, Nature, 349 (1991), 630-633.   Google Scholar

[8]

E. O. Burdene and H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49-53.   Google Scholar

[9]

P. Feng and Z. Zhou, Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony, Commun. Pure Appl. Anal., 6 (2007), 1145-1165.  doi: 10.3934/cpaa.2007.6.1145.  Google Scholar

[10]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen., 7 (1937), 353-369.   Google Scholar

[11]

K. P. Hadeler, Travelling fronts and free boundary value problems, in Numerical Treatment of Free Boundary Value Problems (eds. J. Albretch, L. Collatz, K. H. Hoffman), Basel: Birkhauser, 1981. Google Scholar

[12]

K. KawasakiA. MochizukiM. MatsushitaT. Umeda and N. Schigesada, Modeling spatio-temporal patterns generated by bacillus subtilis, J. Theor. Biol., 188 (1997), 177-185.   Google Scholar

[13]

A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem, Applicable mathematics of non-physical phenomena(eds. F. OLiveira-Pinto, B. W. Conolly), New York: Wiley, 1982. Google Scholar

[14]

L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations, J. Differential Equations, 195 (2003), 471-496.  doi: 10.1016/j.jde.2003.06.005.  Google Scholar

[15]

R. A. SatnoianuP. K. MainiF. S. Garduno and J. P. Armitage, Traveling waves in a nonlinear degenerate diffusion model for bacterial pattern formation, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 339-362.  doi: 10.3934/dcdsb.2001.1.339.  Google Scholar

show all references

References:
[1]

K. Anguige, Multi-phase Stefan problems for a non-linear one-dimensional model of cell-to-cell adhesion and diffusion, European J. Appl. Math., 21 (2010), 109-136.  doi: 10.1017/S0956792509990167.  Google Scholar

[2]

K. Anguige, A one-dimensional model for the interaction between cell-to-cell adhesion and chemotactic signalling, European J. Appl. Math., 22 (2011), 291-316.  doi: 10.1017/S0956792511000040.  Google Scholar

[3]

K. Anguige and C. Schmeiser, A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion, J. Math. Biol., 58 (2009), 395-427.  doi: 10.1007/s00285-008-0197-8.  Google Scholar

[4]

L. Bao and Z. Zhou, Traveling wave in backward and forward parabolic equations from population dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1507-1522.  doi: 10.3934/dcdsb.2014.19.1507.  Google Scholar

[5]

J. W. Barrett and K. Deckelnick, Existence, uniquesness and approximation of a doubly-degenerate nonlinear parabolic system modeling bacterial evolution, Math. Models Methods Appl. Sci., 17 (2007), 1095-1127.  doi: 10.1142/S0218202507002212.  Google Scholar

[6]

H. BerestyckiG. NadinB. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[7]

E. O. Burdene and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli, Nature, 349 (1991), 630-633.   Google Scholar

[8]

E. O. Burdene and H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49-53.   Google Scholar

[9]

P. Feng and Z. Zhou, Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony, Commun. Pure Appl. Anal., 6 (2007), 1145-1165.  doi: 10.3934/cpaa.2007.6.1145.  Google Scholar

[10]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen., 7 (1937), 353-369.   Google Scholar

[11]

K. P. Hadeler, Travelling fronts and free boundary value problems, in Numerical Treatment of Free Boundary Value Problems (eds. J. Albretch, L. Collatz, K. H. Hoffman), Basel: Birkhauser, 1981. Google Scholar

[12]

K. KawasakiA. MochizukiM. MatsushitaT. Umeda and N. Schigesada, Modeling spatio-temporal patterns generated by bacillus subtilis, J. Theor. Biol., 188 (1997), 177-185.   Google Scholar

[13]

A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem, Applicable mathematics of non-physical phenomena(eds. F. OLiveira-Pinto, B. W. Conolly), New York: Wiley, 1982. Google Scholar

[14]

L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations, J. Differential Equations, 195 (2003), 471-496.  doi: 10.1016/j.jde.2003.06.005.  Google Scholar

[15]

R. A. SatnoianuP. K. MainiF. S. Garduno and J. P. Armitage, Traveling waves in a nonlinear degenerate diffusion model for bacterial pattern formation, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 339-362.  doi: 10.3934/dcdsb.2001.1.339.  Google Scholar

[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[4]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[5]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[6]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[7]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[8]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[9]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[10]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[14]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[15]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[18]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[19]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (75)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]