
-
Previous Article
Asymptotic behaviour of an age and infection age structured model for the propagation of fungal diseases in plants
- DCDS-B Home
- This Issue
-
Next Article
New convergence analysis for assumed stress hybrid quadrilateral finite element method
The stabilized semi-implicit finite element method for the surface Allen-Cahn equation
1. | College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China |
2. | Institute of Mathematics and Physics, Xinjiang University, Urumqi 830046, China |
3. | Departamento de Matemática, Universidade Federal do Paraná, Centro Politácnico, Curitiba 81531-980, PR, Brazil |
Two semi-implicit numerical methods are proposed for solving the surface Allen-Cahn equation which is a general mathematical model to describe phase separation on general surfaces. The spatial discretization is based on surface finite element method while the temporal discretization methods are first-and second-order stabilized semi-implicit schemes to guarantee the energy decay. The stability analysis and error estimate are provided for the stabilized semi-implicit schemes. Furthermore, the first-and second-order operator splitting methods are presented to compare with stabilized semi-implicit schemes. Some numerical experiments including phase separation and mean curvature flow on surfaces are performed to illustrate stability and accuracy of these methods.
References:
[1] |
S. M. Allen and J. W. Cahn,
A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall, 27 (1979), 1085-1095.
doi: 10.1016/0001-6160(79)90196-2. |
[2] |
D. P. Bertsekas,
Constrained Optimization and Lagrange Multiplier Methods Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. |
[3] |
L. Chen,
Phase-field models for microstructure evolution, Ann. Rev. Mater. Res., 32 (2002), 113-140.
doi: 10.1146/annurev.matsci.32.112001.132041. |
[4] |
M. Cheng and J. A. Warren,
An efficient algorithm for solving the phase field crystal model, J. Comput. Phys., 227 (2008), 6241-6248.
doi: 10.1016/j.jcp.2008.03.012. |
[5] |
Y. Choi, D. Jeong, S. Lee, M. Yoo and J. Kim,
Motion by mean curvature of curves on surfaces using the Allen-Cahn equation, Int. J. Eng. Sci., 97 (2015), 126-132.
doi: 10.1016/j.ijengsci.2015.10.002. |
[6] |
K. Deckelnick, G. Dziuk, C. M. Elliott and C. J. Heine,
An $h$-narrow band finite-element method for elliptic equations on implicit surfaces, IMA. J. Numer. Anal., 30 (2010), 351-376.
doi: 10.1093/imanum/drn049. |
[7] |
Q. Du, L. Ju and L. Tian,
Finite element approximation of the Cahn-Hilliard equation on surfaces, Comput. Methods Appl. Mech. Engrg., 200 (2011), 2458-2470.
doi: 10.1016/j.cma.2011.04.018. |
[8] |
G. Dziuk and C. M. Elliott,
Finite element methods for surface PDEs, Acta Numer., 22 (2013), 289-396.
doi: 10.1017/S0962492913000056. |
[9] |
G. Dziuk and C. M. Elliott,
Surface finite elements for parabolic equations, J. Comput. Math., 25 (2007), 385-407.
|
[10] |
G. Dziuk,
Finite Elements for the Beltrami operator on arbitrary surfaces, Partial Differential Equations and Calculus of Variations, Lecture Notes in Mathematics, Springer, 1357 (2006), 142-155.
doi: 10.1007/BFb0082865. |
[11] |
C. M. Elliott and T. Ranner,
Evolving surface finite element method for the Cahn-Hilliard equation, Numer. Math., 129 (2015), 483-534.
doi: 10.1007/s00211-014-0644-y. |
[12] |
L. C. Evans, H. M. Soner and P. E. Souganidis,
Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123.
doi: 10.1002/cpa.3160450903. |
[13] |
D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, Unpublished article, 1998. |
[14] |
X. Feng, T. Tang and J. Yang,
Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods, SIAM J. Sci. Comput., 37 (2015), 271-294.
doi: 10.1137/130928662. |
[15] |
X. Feng, H. Song, T. Tang and J. Yang,
Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse Prob. Imaging, 7 (2013), 679-695.
doi: 10.3934/ipi.2013.7.679. |
[16] |
X. Feng, T. Tang and J. Yang,
Stabilized Crank-Nicolson /Adams-Bashforth schemes for phase field models, East Asian J. Appl. Math., 3 (2013), 59-80.
doi: 10.4208/eajam.200113.220213a. |
[17] |
B. Fornberg and N. Flyer,
Solving PDEs with radial basis functions, Acta Numer., 24 (2015), 215-258.
doi: 10.1017/S0962492914000130. |
[18] |
Z. Guan, J. S. Lowengrub, C. Wang and S. M. Wise,
Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys., 277 (2014), 48-71.
doi: 10.1016/j.jcp.2014.08.001. |
[19] |
H. Holden,
Splitting Method for Partial Differential Equations with Rough Solutions: Analysis and MATLAB Programs European Mathematical Society, Zurich, 2010.
doi: 10.4171/078. |
[20] |
D. Marenduzzo and E. Orlandini,
Phase separation dynamics on curved surfaces, Soft Matter, 9 (2013), 1178-1187.
doi: 10.1039/C2SM27081A. |
[21] |
C. Piret,
The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces, J. Comput. Phys., 231 (2012), 4662-4675.
doi: 10.1016/j.jcp.2012.03.007. |
[22] |
S. J. Ruuth and B. Merrimanb,
A simple embedding method for solving partial differential equations on surfaces, J. Comput. Phys., 227 (2008), 1943-1961.
doi: 10.1016/j.jcp.2007.10.009. |
[23] |
O. Schönborn and R. C. Desai,
Kinetics of phase ordering on curved surfaces, Phys. A, 239 (1997), 412-419.
|
[24] |
J. Shen, T. Tang and J. Yang,
On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Comm. Math. Sci., 14 (2016), 1517-1534.
doi: 10.4310/CMS.2016.v14.n6.a3. |
[25] |
J. Shen and X. Yang,
Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 1669-1691.
doi: 10.3934/dcds.2010.28.1669. |
[26] |
J. Shen, C. Wang, X. Wang and S. M. Wise,
Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.
doi: 10.1137/110822839. |
[27] |
P. Tang, F. Qiu, H. Zhang, et al. , Phase separation patterns for diblock copolymers on spherical surfaces: A finite volume method Phys. Rev. E. 72 (2005), 016710.
doi: 10.1103/PhysRevE. 72. 016710. |
[28] |
V. Thomee,
Galerkin Finite Element Methods for Parabolic Problems Springer-Verlag, Berlin, 2006. |
[29] |
C. Wang, X. Wang and S. M. Wise,
Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 405-423.
doi: 10.3934/dcds.2010.28.405. |
[30] |
X. Xiao, D. Gui and X. Feng,
A highly efficient operator-splitting finite element method for 2D/3D nonlinear Allen-Cahn equation, Inter. J. Numer. Methods Heat Fluid Flow, 27 (2017), 530-542.
doi: 10.1108/HFF-12-2015-0521. |
[31] |
X. Yang,
Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 1057-1070.
doi: 10.3934/dcdsb.2009.11.1057. |
show all references
References:
[1] |
S. M. Allen and J. W. Cahn,
A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall, 27 (1979), 1085-1095.
doi: 10.1016/0001-6160(79)90196-2. |
[2] |
D. P. Bertsekas,
Constrained Optimization and Lagrange Multiplier Methods Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. |
[3] |
L. Chen,
Phase-field models for microstructure evolution, Ann. Rev. Mater. Res., 32 (2002), 113-140.
doi: 10.1146/annurev.matsci.32.112001.132041. |
[4] |
M. Cheng and J. A. Warren,
An efficient algorithm for solving the phase field crystal model, J. Comput. Phys., 227 (2008), 6241-6248.
doi: 10.1016/j.jcp.2008.03.012. |
[5] |
Y. Choi, D. Jeong, S. Lee, M. Yoo and J. Kim,
Motion by mean curvature of curves on surfaces using the Allen-Cahn equation, Int. J. Eng. Sci., 97 (2015), 126-132.
doi: 10.1016/j.ijengsci.2015.10.002. |
[6] |
K. Deckelnick, G. Dziuk, C. M. Elliott and C. J. Heine,
An $h$-narrow band finite-element method for elliptic equations on implicit surfaces, IMA. J. Numer. Anal., 30 (2010), 351-376.
doi: 10.1093/imanum/drn049. |
[7] |
Q. Du, L. Ju and L. Tian,
Finite element approximation of the Cahn-Hilliard equation on surfaces, Comput. Methods Appl. Mech. Engrg., 200 (2011), 2458-2470.
doi: 10.1016/j.cma.2011.04.018. |
[8] |
G. Dziuk and C. M. Elliott,
Finite element methods for surface PDEs, Acta Numer., 22 (2013), 289-396.
doi: 10.1017/S0962492913000056. |
[9] |
G. Dziuk and C. M. Elliott,
Surface finite elements for parabolic equations, J. Comput. Math., 25 (2007), 385-407.
|
[10] |
G. Dziuk,
Finite Elements for the Beltrami operator on arbitrary surfaces, Partial Differential Equations and Calculus of Variations, Lecture Notes in Mathematics, Springer, 1357 (2006), 142-155.
doi: 10.1007/BFb0082865. |
[11] |
C. M. Elliott and T. Ranner,
Evolving surface finite element method for the Cahn-Hilliard equation, Numer. Math., 129 (2015), 483-534.
doi: 10.1007/s00211-014-0644-y. |
[12] |
L. C. Evans, H. M. Soner and P. E. Souganidis,
Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123.
doi: 10.1002/cpa.3160450903. |
[13] |
D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, Unpublished article, 1998. |
[14] |
X. Feng, T. Tang and J. Yang,
Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods, SIAM J. Sci. Comput., 37 (2015), 271-294.
doi: 10.1137/130928662. |
[15] |
X. Feng, H. Song, T. Tang and J. Yang,
Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse Prob. Imaging, 7 (2013), 679-695.
doi: 10.3934/ipi.2013.7.679. |
[16] |
X. Feng, T. Tang and J. Yang,
Stabilized Crank-Nicolson /Adams-Bashforth schemes for phase field models, East Asian J. Appl. Math., 3 (2013), 59-80.
doi: 10.4208/eajam.200113.220213a. |
[17] |
B. Fornberg and N. Flyer,
Solving PDEs with radial basis functions, Acta Numer., 24 (2015), 215-258.
doi: 10.1017/S0962492914000130. |
[18] |
Z. Guan, J. S. Lowengrub, C. Wang and S. M. Wise,
Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys., 277 (2014), 48-71.
doi: 10.1016/j.jcp.2014.08.001. |
[19] |
H. Holden,
Splitting Method for Partial Differential Equations with Rough Solutions: Analysis and MATLAB Programs European Mathematical Society, Zurich, 2010.
doi: 10.4171/078. |
[20] |
D. Marenduzzo and E. Orlandini,
Phase separation dynamics on curved surfaces, Soft Matter, 9 (2013), 1178-1187.
doi: 10.1039/C2SM27081A. |
[21] |
C. Piret,
The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces, J. Comput. Phys., 231 (2012), 4662-4675.
doi: 10.1016/j.jcp.2012.03.007. |
[22] |
S. J. Ruuth and B. Merrimanb,
A simple embedding method for solving partial differential equations on surfaces, J. Comput. Phys., 227 (2008), 1943-1961.
doi: 10.1016/j.jcp.2007.10.009. |
[23] |
O. Schönborn and R. C. Desai,
Kinetics of phase ordering on curved surfaces, Phys. A, 239 (1997), 412-419.
|
[24] |
J. Shen, T. Tang and J. Yang,
On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Comm. Math. Sci., 14 (2016), 1517-1534.
doi: 10.4310/CMS.2016.v14.n6.a3. |
[25] |
J. Shen and X. Yang,
Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 1669-1691.
doi: 10.3934/dcds.2010.28.1669. |
[26] |
J. Shen, C. Wang, X. Wang and S. M. Wise,
Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.
doi: 10.1137/110822839. |
[27] |
P. Tang, F. Qiu, H. Zhang, et al. , Phase separation patterns for diblock copolymers on spherical surfaces: A finite volume method Phys. Rev. E. 72 (2005), 016710.
doi: 10.1103/PhysRevE. 72. 016710. |
[28] |
V. Thomee,
Galerkin Finite Element Methods for Parabolic Problems Springer-Verlag, Berlin, 2006. |
[29] |
C. Wang, X. Wang and S. M. Wise,
Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 405-423.
doi: 10.3934/dcds.2010.28.405. |
[30] |
X. Xiao, D. Gui and X. Feng,
A highly efficient operator-splitting finite element method for 2D/3D nonlinear Allen-Cahn equation, Inter. J. Numer. Methods Heat Fluid Flow, 27 (2017), 530-542.
doi: 10.1108/HFF-12-2015-0521. |
[31] |
X. Yang,
Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 1057-1070.
doi: 10.3934/dcdsb.2009.11.1057. |













[1] |
Xiaofeng Yang. Error analysis of stabilized semi-implicit method of Allen-Cahn equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1057-1070. doi: 10.3934/dcdsb.2009.11.1057 |
[2] |
Juan Wen, Yaling He, Yinnian He, Kun Wang. Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1873-1894. doi: 10.3934/cpaa.2021074 |
[3] |
Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1 |
[4] |
Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems and Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679 |
[5] |
Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4169-4190. doi: 10.3934/dcdsb.2019077 |
[6] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[7] |
Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399 |
[8] |
Hyunjung Choi, Yanxiang Zhao. Second-order stabilized semi-implicit energy stable schemes for bubble assemblies in binary and ternary systems. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021246 |
[9] |
Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703 |
[10] |
Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41 |
[11] |
Xiaoxiao He, Fei Song, Weibing Deng. A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2849-2871. doi: 10.3934/dcdsb.2021163 |
[12] |
Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 |
[13] |
Hassan Belhadj, Mohamed Fihri, Samir Khallouq, Nabila Nagid. Optimal number of Schur subdomains: Application to semi-implicit finite volume discretization of semilinear reaction diffusion problem. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 21-34. doi: 10.3934/dcdss.2018002 |
[14] |
Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663 |
[15] |
Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015 |
[16] |
Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Representation formulas of solutions and bifurcation sheets to a nonlocal Allen-Cahn equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4907-4925. doi: 10.3934/dcds.2020205 |
[17] |
Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure and Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577 |
[18] |
Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319 |
[19] |
Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009 |
[20] |
Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]