Two semi-implicit numerical methods are proposed for solving the surface Allen-Cahn equation which is a general mathematical model to describe phase separation on general surfaces. The spatial discretization is based on surface finite element method while the temporal discretization methods are first-and second-order stabilized semi-implicit schemes to guarantee the energy decay. The stability analysis and error estimate are provided for the stabilized semi-implicit schemes. Furthermore, the first-and second-order operator splitting methods are presented to compare with stabilized semi-implicit schemes. Some numerical experiments including phase separation and mean curvature flow on surfaces are performed to illustrate stability and accuracy of these methods.
Citation: |
[1] |
S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall, 27 (1979), 1085-1095.
doi: 10.1016/0001-6160(79)90196-2.![]() ![]() |
[2] |
D. P. Bertsekas,
Constrained Optimization and Lagrange Multiplier Methods Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.
![]() ![]() |
[3] |
L. Chen, Phase-field models for microstructure evolution, Ann. Rev. Mater. Res., 32 (2002), 113-140.
doi: 10.1146/annurev.matsci.32.112001.132041.![]() ![]() |
[4] |
M. Cheng and J. A. Warren, An efficient algorithm for solving the phase field crystal model, J. Comput. Phys., 227 (2008), 6241-6248.
doi: 10.1016/j.jcp.2008.03.012.![]() ![]() ![]() |
[5] |
Y. Choi, D. Jeong, S. Lee, M. Yoo and J. Kim, Motion by mean curvature of curves on surfaces using the Allen-Cahn equation, Int. J. Eng. Sci., 97 (2015), 126-132.
doi: 10.1016/j.ijengsci.2015.10.002.![]() ![]() ![]() |
[6] |
K. Deckelnick, G. Dziuk, C. M. Elliott and C. J. Heine, An $h$-narrow band finite-element method for elliptic equations on implicit surfaces, IMA. J. Numer. Anal., 30 (2010), 351-376.
doi: 10.1093/imanum/drn049.![]() ![]() ![]() |
[7] |
Q. Du, L. Ju and L. Tian, Finite element approximation of the Cahn-Hilliard equation on surfaces, Comput. Methods Appl. Mech. Engrg., 200 (2011), 2458-2470.
doi: 10.1016/j.cma.2011.04.018.![]() ![]() ![]() |
[8] |
G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta Numer., 22 (2013), 289-396.
doi: 10.1017/S0962492913000056.![]() ![]() ![]() |
[9] |
G. Dziuk and C. M. Elliott, Surface finite elements for parabolic equations, J. Comput. Math., 25 (2007), 385-407.
![]() ![]() |
[10] |
G. Dziuk, Finite Elements for the Beltrami operator on arbitrary surfaces, Partial Differential Equations and Calculus of Variations, Lecture Notes in Mathematics, Springer, 1357 (2006), 142-155.
doi: 10.1007/BFb0082865.![]() ![]() |
[11] |
C. M. Elliott and T. Ranner, Evolving surface finite element method for the Cahn-Hilliard equation, Numer. Math., 129 (2015), 483-534.
doi: 10.1007/s00211-014-0644-y.![]() ![]() ![]() |
[12] |
L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123.
doi: 10.1002/cpa.3160450903.![]() ![]() ![]() |
[13] |
D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, Unpublished article, 1998.
![]() |
[14] |
X. Feng, T. Tang and J. Yang, Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods, SIAM J. Sci. Comput., 37 (2015), 271-294.
doi: 10.1137/130928662.![]() ![]() ![]() |
[15] |
X. Feng, H. Song, T. Tang and J. Yang, Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse Prob. Imaging, 7 (2013), 679-695.
doi: 10.3934/ipi.2013.7.679.![]() ![]() ![]() |
[16] |
X. Feng, T. Tang and J. Yang, Stabilized Crank-Nicolson /Adams-Bashforth schemes for phase field models, East Asian J. Appl. Math., 3 (2013), 59-80.
doi: 10.4208/eajam.200113.220213a.![]() ![]() ![]() |
[17] |
B. Fornberg and N. Flyer, Solving PDEs with radial basis functions, Acta Numer., 24 (2015), 215-258.
doi: 10.1017/S0962492914000130.![]() ![]() ![]() |
[18] |
Z. Guan, J. S. Lowengrub, C. Wang and S. M. Wise, Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys., 277 (2014), 48-71.
doi: 10.1016/j.jcp.2014.08.001.![]() ![]() ![]() |
[19] |
H. Holden,
Splitting Method for Partial Differential Equations with Rough Solutions: Analysis and MATLAB Programs European Mathematical Society, Zurich, 2010.
doi: 10.4171/078.![]() ![]() ![]() |
[20] |
D. Marenduzzo and E. Orlandini, Phase separation dynamics on curved surfaces, Soft Matter, 9 (2013), 1178-1187.
doi: 10.1039/C2SM27081A.![]() ![]() |
[21] |
C. Piret, The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces, J. Comput. Phys., 231 (2012), 4662-4675.
doi: 10.1016/j.jcp.2012.03.007.![]() ![]() ![]() |
[22] |
S. J. Ruuth and B. Merrimanb, A simple embedding method for solving partial differential equations on surfaces, J. Comput. Phys., 227 (2008), 1943-1961.
doi: 10.1016/j.jcp.2007.10.009.![]() ![]() ![]() |
[23] |
O. Schönborn and R. C. Desai, Kinetics of phase ordering on curved surfaces, Phys. A, 239 (1997), 412-419.
![]() |
[24] |
J. Shen, T. Tang and J. Yang, On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Comm. Math. Sci., 14 (2016), 1517-1534.
doi: 10.4310/CMS.2016.v14.n6.a3.![]() ![]() |
[25] |
J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 1669-1691.
doi: 10.3934/dcds.2010.28.1669.![]() ![]() ![]() |
[26] |
J. Shen, C. Wang, X. Wang and S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.
doi: 10.1137/110822839.![]() ![]() ![]() |
[27] |
P. Tang, F. Qiu, H. Zhang, et al. , Phase separation patterns for diblock copolymers on spherical surfaces: A finite volume method Phys. Rev. E. 72 (2005), 016710.
doi: 10.1103/PhysRevE. 72. 016710.![]() ![]() |
[28] |
V. Thomee,
Galerkin Finite Element Methods for Parabolic Problems Springer-Verlag, Berlin, 2006.
![]() ![]() |
[29] |
C. Wang, X. Wang and S. M. Wise, Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 405-423.
doi: 10.3934/dcds.2010.28.405.![]() ![]() ![]() |
[30] |
X. Xiao, D. Gui and X. Feng, A highly efficient operator-splitting finite element method for 2D/3D nonlinear Allen-Cahn equation, Inter. J. Numer. Methods Heat Fluid Flow, 27 (2017), 530-542.
doi: 10.1108/HFF-12-2015-0521.![]() ![]() |
[31] |
X. Yang, Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 1057-1070.
doi: 10.3934/dcdsb.2009.11.1057.![]() ![]() ![]() |