• Previous Article
    Exponential stability of solutions for retarded stochastic differential equations without dissipativity
  • DCDS-B Home
  • This Issue
  • Next Article
    Asymptotic behaviour of an age and infection age structured model for the propagation of fungal diseases in plants
September  2017, 22(7): 2907-2921. doi: 10.3934/dcdsb.2017156

LaSalle type stationary oscillation theorems for Affine-Periodic Systems

1. 

College of mathematics, Jilin Normal University, Jilin 136000, China

2. 

College of Mathematics, Jilin University, Changchun 130012, China

3. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

4. 

Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

5. 

Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Yong Li

Received  July 2016 Revised  March 2017 Published  May 2017

Fund Project: The second author is supported by NSFC (grant No. 11201173). The third author is supported by National Basic Research Program of China (grant No. 2013CB834100), NSFC (grant No. 11571065) and NSFC (grant No. 11171132).

The paper concerns the existence of affine-periodic solutions for affine-periodic (functional) differential systems, which is a new type of quasi-periodic solutions if they are bounded. Some more general criteria than LaSalle's one on the existence of periodic solutions are established. Some applications are also given.

Citation: Hongren Wang, Xue Yang, Yong Li, Xiaoyue Li. LaSalle type stationary oscillation theorems for Affine-Periodic Systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2907-2921. doi: 10.3934/dcdsb.2017156
References:
[1]

T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional-Differential Equations Mathematics in Science and Engineering, 178, Academic Press, Inc. , Orlando, FL, 1985.

[2]

O. ChadliQ. H. Ansari and J. C. Yao, Mixed equilibrium problems and anti-periodic solutions for nonlinear evolution equations, J. Optim. Theory Appl., 168 (2016), 410-440.  doi: 10.1007/s10957-015-0707-y.

[3]

X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discrete Contin. Dyn. Syst., 36 (2016), 643-652.  doi: 10.3934/dcds.2016.36.643.

[4]

Y. ChenJ. J. Nieto and D. O'Regan, Anti-periodic solutions for evolution equations associated with maximal monotone mappings, Appl. Math. Lett., 24 (2011), 302-307.  doi: 10.1016/j.aml.2010.10.010.

[5]

Y. ChenD. O'Regan and R. P. Agarwal, Anti-periodic solutions for semilinear evolution equations in Banach spaces, J. Appl. Math. Comput., 38 (2012), 63-70.  doi: 10.1007/s12190-010-0463-y.

[6]

W. A. Coppel, Dichotomies in Stability Theory Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978.

[7]

J. R. Graef and L. Kong, Periodic solutions of first order functional differential equations, Appl. Math. Lett., 24 (2011), 1981-1985.  doi: 10.1016/j.aml.2011.05.020.

[8]

T. Haddad and T. Haddad, Existence and uniqueness of anti-periodic solutions for nonlinear third-order differential inclusions, Electron. J. Differential Equations (2013), 10 pp.

[9]

J. K. Hale, Functional Differential Equations Applied Mathematical Sciences, Vol. 3, Springer-Verlag New York, New York-Heidelberg, 1971.

[10]

S. Heidarkhani, G. A. Afrouzi, A. Hadjian and J. Henderson, Existence of infinitely many anti-periodic solutions for second-order impulsive differential inclusions, Electron. J. Differential Equations (2013), 13 pp.

[11]

J. Knežević-Miljanović, Periodic solutions of nonlinear differential equations, Adv. Dyn. Syst. Appl., 7 (2012), 89-93. 

[12]

T. KüpperY. Li and B. Zhang, Periodic solutions for dissipative-repulsive systems, Tohoku Math. J. (2), 52 (2000), 321-329.  doi: 10.2748/tmj/1178207816.

[13]

J. LaSalle and S. Lefschetz, Stabillity by Lyapunov's Direct Method, with Application Mathematics in Science and Engineering, Vol. 4, New York-London 1961.

[14]

Y. Li and F. Huang, Levinson's problem on affine-periodic solutions, Adv. Nonlinear Stud., 15 (2015), 241-252.  doi: 10.1515/ans-2015-0113.

[15]

Y. LiQ. Zhou and X. Lu, Periodic solutions for functional-differential inclusions with infinite delay, Sci. China Ser. A, 37 (1994), 1289-1301. 

[16]

Y. LiQ. Zhou and X. Lu, Periodic solutions and equilibrium states for functional-differential inclusions with nonconvex right-hand side, Quart. Appl. Math., 55 (1997), 57-68.  doi: 10.1090/qam/1433752.

[17]

J. LiangJ. Liu and T. Xiao, Periodic solutions of delay impulsive differential equations, Nonlinear Anal., 74 (2011), 6835-6842.  doi: 10.1016/j.na.2011.07.008.

[18]

A. LipowskiB. Przeradzki and K. Szymańska-Debowska, Periodic solutions to differential equations with a generalized p-Laplacian, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2593-2601.  doi: 10.3934/dcdsb.2014.19.2593.

[19]

J. Mawhin, Periodic solutions of differential and difference systems with pendulum-type nonlinearities: Variational approaches, Differential and difference equations with applications, Springer Proc. Math. Stat., Springer, New York, 47 (2013), 83-98.  doi: 10.1007/978-1-4614-7333-6_7.

[20]

X. Meng and Y. Li, Affine-periodic solutions for discrete dynamical systems, J. Appl. Anal. Comput., 5 (2015), 781-792. 

[21]

S. Padhi, John R. Graef and P. D. N. Srinivasu, Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics Springer, New Delhi, 2014. doi: 10.1007/978-81-322-1895-1.

[22]

P. Sa Ngiamsunthorn, Existence of periodic solutions for differential equations with multiple delays under dichotomy condition Adv. Difference Equ. 2015 (2015), 11 pp. doi: 10.1186/s13662-015-0598-0.

[23]

C. Wang and Y. Li, Affine-periodic solutions for nonlinear dynamic equations on time scales Adv. Difference Equ. 2015 (2015), 16 pp. doi: 10.1186/s13662-015-0634-0.

[24]

C. WangX. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equations, Rocky Mountain J. Math., 46 (2016), 1717-1737.  doi: 10.1216/RMJ-2016-46-5-1717.

[25]

J. R. Ward, Periodic solutions of first order systems, Discrete Contin. Dyn. Syst., 33 (2013), 381-389.  doi: 10.3934/dcds.2013.33.381.

[26]

R. WuF. Cong and Y. Li, Anti-periodic solutions for second order differential equations, Appl. Math. Lett., 24 (2011), 860-863.  doi: 10.1016/j.aml.2010.12.031.

[27]

T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions Applied Mathematical Sciences, Vol. 14. Springer-Verlag, New York-Heidelberg, 1975.

[28]

Y. Zhang, X. Yang and Y. Li, Affine-periodic solutions for dissipative systems, Abstr. Appl. Anal. (2013), Art. ID 157140, 4 pp.

show all references

References:
[1]

T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional-Differential Equations Mathematics in Science and Engineering, 178, Academic Press, Inc. , Orlando, FL, 1985.

[2]

O. ChadliQ. H. Ansari and J. C. Yao, Mixed equilibrium problems and anti-periodic solutions for nonlinear evolution equations, J. Optim. Theory Appl., 168 (2016), 410-440.  doi: 10.1007/s10957-015-0707-y.

[3]

X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discrete Contin. Dyn. Syst., 36 (2016), 643-652.  doi: 10.3934/dcds.2016.36.643.

[4]

Y. ChenJ. J. Nieto and D. O'Regan, Anti-periodic solutions for evolution equations associated with maximal monotone mappings, Appl. Math. Lett., 24 (2011), 302-307.  doi: 10.1016/j.aml.2010.10.010.

[5]

Y. ChenD. O'Regan and R. P. Agarwal, Anti-periodic solutions for semilinear evolution equations in Banach spaces, J. Appl. Math. Comput., 38 (2012), 63-70.  doi: 10.1007/s12190-010-0463-y.

[6]

W. A. Coppel, Dichotomies in Stability Theory Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978.

[7]

J. R. Graef and L. Kong, Periodic solutions of first order functional differential equations, Appl. Math. Lett., 24 (2011), 1981-1985.  doi: 10.1016/j.aml.2011.05.020.

[8]

T. Haddad and T. Haddad, Existence and uniqueness of anti-periodic solutions for nonlinear third-order differential inclusions, Electron. J. Differential Equations (2013), 10 pp.

[9]

J. K. Hale, Functional Differential Equations Applied Mathematical Sciences, Vol. 3, Springer-Verlag New York, New York-Heidelberg, 1971.

[10]

S. Heidarkhani, G. A. Afrouzi, A. Hadjian and J. Henderson, Existence of infinitely many anti-periodic solutions for second-order impulsive differential inclusions, Electron. J. Differential Equations (2013), 13 pp.

[11]

J. Knežević-Miljanović, Periodic solutions of nonlinear differential equations, Adv. Dyn. Syst. Appl., 7 (2012), 89-93. 

[12]

T. KüpperY. Li and B. Zhang, Periodic solutions for dissipative-repulsive systems, Tohoku Math. J. (2), 52 (2000), 321-329.  doi: 10.2748/tmj/1178207816.

[13]

J. LaSalle and S. Lefschetz, Stabillity by Lyapunov's Direct Method, with Application Mathematics in Science and Engineering, Vol. 4, New York-London 1961.

[14]

Y. Li and F. Huang, Levinson's problem on affine-periodic solutions, Adv. Nonlinear Stud., 15 (2015), 241-252.  doi: 10.1515/ans-2015-0113.

[15]

Y. LiQ. Zhou and X. Lu, Periodic solutions for functional-differential inclusions with infinite delay, Sci. China Ser. A, 37 (1994), 1289-1301. 

[16]

Y. LiQ. Zhou and X. Lu, Periodic solutions and equilibrium states for functional-differential inclusions with nonconvex right-hand side, Quart. Appl. Math., 55 (1997), 57-68.  doi: 10.1090/qam/1433752.

[17]

J. LiangJ. Liu and T. Xiao, Periodic solutions of delay impulsive differential equations, Nonlinear Anal., 74 (2011), 6835-6842.  doi: 10.1016/j.na.2011.07.008.

[18]

A. LipowskiB. Przeradzki and K. Szymańska-Debowska, Periodic solutions to differential equations with a generalized p-Laplacian, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2593-2601.  doi: 10.3934/dcdsb.2014.19.2593.

[19]

J. Mawhin, Periodic solutions of differential and difference systems with pendulum-type nonlinearities: Variational approaches, Differential and difference equations with applications, Springer Proc. Math. Stat., Springer, New York, 47 (2013), 83-98.  doi: 10.1007/978-1-4614-7333-6_7.

[20]

X. Meng and Y. Li, Affine-periodic solutions for discrete dynamical systems, J. Appl. Anal. Comput., 5 (2015), 781-792. 

[21]

S. Padhi, John R. Graef and P. D. N. Srinivasu, Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics Springer, New Delhi, 2014. doi: 10.1007/978-81-322-1895-1.

[22]

P. Sa Ngiamsunthorn, Existence of periodic solutions for differential equations with multiple delays under dichotomy condition Adv. Difference Equ. 2015 (2015), 11 pp. doi: 10.1186/s13662-015-0598-0.

[23]

C. Wang and Y. Li, Affine-periodic solutions for nonlinear dynamic equations on time scales Adv. Difference Equ. 2015 (2015), 16 pp. doi: 10.1186/s13662-015-0634-0.

[24]

C. WangX. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equations, Rocky Mountain J. Math., 46 (2016), 1717-1737.  doi: 10.1216/RMJ-2016-46-5-1717.

[25]

J. R. Ward, Periodic solutions of first order systems, Discrete Contin. Dyn. Syst., 33 (2013), 381-389.  doi: 10.3934/dcds.2013.33.381.

[26]

R. WuF. Cong and Y. Li, Anti-periodic solutions for second order differential equations, Appl. Math. Lett., 24 (2011), 860-863.  doi: 10.1016/j.aml.2010.12.031.

[27]

T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions Applied Mathematical Sciences, Vol. 14. Springer-Verlag, New York-Heidelberg, 1975.

[28]

Y. Zhang, X. Yang and Y. Li, Affine-periodic solutions for dissipative systems, Abstr. Appl. Anal. (2013), Art. ID 157140, 4 pp.

[1]

Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146

[2]

Peter Dormayer, Anatoli F. Ivanov. Stability of symmetric periodic solutions with small amplitude of $\dot x(t)=\alpha f(x(t), x(t-1))$. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 61-82. doi: 10.3934/dcds.1999.5.61

[3]

Yong Li, Hongren Wang, Xue Yang. Fink type conjecture on affine-periodic solutions and Levinson's conjecture to Newtonian systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2607-2623. doi: 10.3934/dcdsb.2018123

[4]

Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032

[5]

Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic and Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569

[6]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure and Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[7]

Yuta Ishii. Stability of multi-peak symmetric stationary solutions for the Schnakenberg model with periodic heterogeneity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 2965-3031. doi: 10.3934/cpaa.2020130

[8]

Jifeng Chu, Pedro J. Torres, Feng Wang. Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1921-1932. doi: 10.3934/dcds.2015.35.1921

[9]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[10]

M.I. Gil’. Existence and stability of periodic solutions of semilinear neutral type systems. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 809-820. doi: 10.3934/dcds.2001.7.809

[11]

Paolo Perfetti. Hamiltonian equations on $\mathbb{T}^\infty$ and almost-periodic solutions. Conference Publications, 2001, 2001 (Special) : 303-309. doi: 10.3934/proc.2001.2001.303

[12]

Pablo Amster, Mariel Paula Kuna, Dionicio Santos. Stability, existence and non-existence of $ T $-periodic solutions of nonlinear delayed differential equations with $ \varphi $-Laplacian. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022070

[13]

Björn Gebhard. Periodic solutions for the N-vortex problem via a superposition principle. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5443-5460. doi: 10.3934/dcds.2018240

[14]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[15]

Francesca R. Guarguaglini. Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks and Heterogeneous Media, 2018, 13 (1) : 47-67. doi: 10.3934/nhm.2018003

[16]

Oleg Imanuvilov. On the asymptotic properties for stationary solutions to the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2301-2340. doi: 10.3934/dcds.2020366

[17]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[18]

Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 711-722. doi: 10.3934/dcdss.2013.6.711

[19]

Pietro Baldi. Quasi-periodic solutions of the equation $v_{t t} - v_{x x} +v^3 = f(v)$. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 883-903. doi: 10.3934/dcds.2006.15.883

[20]

Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (134)
  • HTML views (107)
  • Cited by (3)

Other articles
by authors

[Back to Top]