\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the existence of solutions connecting IK singularities and impasse points in fully nonlinear RLC circuits

1This paper has been performed within the activity of GNAMPA-INdAM
2Partially supported by the Slovak Grant Agency VEGA No. 2/0153/16 and No. 1/0078/17 and the Slovak Research and Development Agency under the contract No. APVV-14-0378

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • Higher-dimensional nonlinear and perturbed systems of implicit ordinary differential equations are studied by means of methods of dynamical systems. Namely, the persistence of solutions are studied under nonautonomous perturbations connecting either impasse points with IK-singularities or two impasse points. Important parts of the paper are applications of the theory to concrete perturbed fully nonlinear RLC circuits.

    Mathematics Subject Classification: 34A09, 37C60, 47N70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The heteroclinic orbits of equation (4.5)

    Figure 2.  The heteroclinic orbits of equation (4.5)

  • [1] F. Battelli and M. Fečkan, Nonlinear RLC circuits and implicit ODEs, Differential Integral Equations, 27 (2014), 671-690. 
    [2] F. Battelli and M. Fečkan, Melnikov theory for nonlinear implicit ODEs, J. Differential Equations, 256 (2014), 1157-1190.  doi: 10.1016/j.jde.2013.10.012.
    [3] F. Battelli and M. Fečkan, Melnikov theory for weakly coupled nonlinear RLC circuits Bound. Value Probl. , 2014: 101 (2014), 27pp. doi: 10.1186/1687-2770-2014-101.
    [4] F. Battelli and M. Fečkan, On the existence of solutions connecting singularities in nonlinear RLC circuits, Nonlinear Anal., 116 (2015), 26-36.  doi: 10.1016/j.na.2014.12.015.
    [5] L. O. Chua, Ch. A. Desoer and E. S. Kuh, Linear and Nonlinear Circuits McGraw-Hill, New York, 1987.
    [6] E. Gluskin, A nonlinear resistor and nonlinear inductor using a nonlinear capacitor, J. Franklin Inst., 336 (1999), 1035-1047.  doi: 10.1016/S0016-0032(99)00029-0.
    [7] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations, Analysis and Numerical Solution European Math. Soc. 2006. doi: 10.4171/017.
    [8] N. Lazarides, M. Eleftheriou and G. P. Tsironis, Discrete breathers in nonlinear magnetic metamaterials Phys. Rew. Lett. , 97 (2006), 157406. doi: 10.1103/PhysRevLett. 97. 157406.
    [9] M. Medved', Normal forms of implicit and observed implicit differential equations, Riv. Mat. Pura ed Appl., 10 (1991), 95-107. 
    [10] M. Medved', Qualitative properties of generalized vector fields, Riv. Mat. Pura ed Appl., 15 (1994), 7-31. 
    [11] P. J. Rabier and W. C. Rheinboldt, A general existence and uniqueness theorem for implicit differential algebraic equations, Differential Integral Equations, 4 (1991), 563-582. 
    [12] P. J. Rabier and W. C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations, J. Differential Equations, 109 (1994), 110-146.  doi: 10.1006/jdeq.1994.1046.
    [13] P. J. Rabier and W. C. Rheinboldt, On impasse points of quasilinear differential algebraic equations, J. Math. Anal. Appl., 181 (1994), 429-454.  doi: 10.1006/jmaa.1994.1033.
    [14] P. J. Rabier and W. C. Rheinboldt, On the computation of impasse points of quasilinear differential algebraic equations, Math. Comp., 62 (1994), 133-154.  doi: 10.2307/2153400.
    [15] Riaza, Differential-Algebraic Systems, Analytical Aspects and Circuit Applications World Scien. Publ. Co. Pte. Ltd. , 2008. doi: 10.1142/6746.
    [16] G. P. Veldes, J. Cuevas, P. G. Kevrekidis and D. J. Frantzeskakis, Quasidiscrete microwave solitons in a split-ring-resonator-based left-handed coplanar waveguide Phys. Rev. E, 83 (2011), 046608. doi: 10.1103/PhysRevE. 83. 046608.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(600) PDF downloads(174) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return