October  2017, 22(8): 3079-3090. doi: 10.3934/dcdsb.2017164

An instability theorem for nonlinear fractional differential systems

1. 

Institute of Mathematics, Vietnam Academy of Science and Technology, Viet Nam

2. 

Department of Mathematics, Hokkaido University, Japan

3. 

Department of Mathematics, Technische Universität Dresden, Dresden, Germany

Received  August 2016 Revised  October 2016 Published  June 2017

In this paper, we give a criterion on instability of an equilibrium of a nonlinear Caputo fractional differential system. More precisely, we prove that if the spectrum of the linearization has at least one eigenvalue in the sector
$\left\{ \lambda \in \mathbb{C}\setminus \{0\}:|\arg (\lambda )| < \frac{\alpha \pi }{2} \right\},$
where
$α∈ (0,1)$
is the order of the fractional differential system, then the equilibrium of the nonlinear system is unstable.
Citation: Nguyen Dinh Cong, Doan Thai Son, Stefan Siegmund, Hoang The Tuan. An instability theorem for nonlinear fractional differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3079-3090. doi: 10.3934/dcdsb.2017164
References:
[1]

R. Abu-Saris and Q. Al-Mdallal, On the asymptotic stability of linear system of fractionalorder difference equations, Fract. Calc. Appl. Anal., 16 (2013), 613-629.  doi: 10.2478/s13540-013-0039-2.  Google Scholar

[2]

R. AgarwalD. O'Regan and S. Hristova, Stability of Caputo fractional differential equations by Lyapunov functions, Appl. Math., 60 (2015), 653-676.  doi: 10.1007/s10492-015-0116-4.  Google Scholar

[3]

E. AhmedA. M. A. El-Sayed and H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542-553.  doi: 10.1016/j.jmaa.2006.01.087.  Google Scholar

[4]

J. Audounet, D. Matignon and G. Montseny, Semi-linear diffusive representations for nonlinear fractional differential systems, Nonlinear control in the year 2000, Vol. 1 (Paris), Lecture Notes in Control and Inform. Sci. , 258, Springer, London, (2001), 73–82. doi: 10.1007/BFb0110208.  Google Scholar

[5]

B. BonillaM. Rivero and J. J. Trujillo, On systems of linear fractional differential equations with constant coefficients, Applied Mathematics and Computation, 187 (2007), 68-78.  doi: 10.1016/j.amc.2006.08.104.  Google Scholar

[6]

J. ČermákT. Kisela and L. Nechvátal, Stability regions for linear fractional differential systems and their discretizations, Applied Mathematics and Computation, 219 (2013), 7012-7022.  doi: 10.1016/j.amc.2012.12.019.  Google Scholar

[7]

J. ČermákI. Győri and L. Nechvátal, On explicit stability conditions for a linear fractional difference system, Fract. Calc. Appl. Anal., 18 (2015), 651-672.  doi: 10.1515/fca-2015-0040.  Google Scholar

[8]

E. A. Coddington and N. Levinson, Theory of Differential Equations, McCrow–Hill, New York, 1955.  Google Scholar

[9]

N. D. CongT. S. DoanS. Siegmund and H. T. Tuan, On stable manifolds for planar fractional differential equations, Applied Mathematics and Computation, 226 (2014), 157-168.  doi: 10.1016/j.amc.2013.10.010.  Google Scholar

[10]

N. D. CongT. S. DoanS. Siegmund and H. T. Tuan, Linearized asymptotic stability for fractional differential equations, Electronic Journal of Qualitative Theory of Differential Equations, (2016), 1-13.   Google Scholar

[11]

N. D. CongT. S. DoanS. Siegmund and H. T. Tuan, On stable manifolds for fractional differential equations in high dimensional spaces, Nonlinear Dynamics, 86 (2016), 1885-1894.  doi: 10.1007/s11071-016-3002-z.  Google Scholar

[12]

W. Deng, Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 72 (2010), 1768-1777.  doi: 10.1016/j.na.2009.09.018.  Google Scholar

[13]

K. Diethelm, The Analysis of Fractional Differential Equations. An Application–Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[14]

J. Y. KaminskiR. Shorten and E. Zeheb, Exact stability test and stabilization for fractional systems, Systems Control Lett., 85 (2015), 95-99.  doi: 10.1016/j.sysconle.2015.08.005.  Google Scholar

[15]

P. Lancaster and M. Tismenetsky, The Theory of Matrices. Second Edition, Academic Press, San Diego, 1985.  Google Scholar

[16]

C. Li and Y. Ma, Fractional dynamical system and its linearization theorem, Nonlinear Dynamics, 71 (2013), 621-633.  doi: 10.1007/s11071-012-0601-1.  Google Scholar

[17]

D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational Eng. in Sys. Appl., 2 (1996), 963-968.   Google Scholar

[18]

K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.  Google Scholar

[19]

I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc. , San Diego, CA, 1999.  Google Scholar

[20]

S. G. Samko, A. A. Kilbas and O. I. Maritchev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Swizerland, 1993.  Google Scholar

[21]

J. Shen and J. Lam, Non-existence of finite stable eqilibria in fractional-order nonlinear systems, Automatica, 50 (2014), 547-551.  doi: 10.1016/j.automatica.2013.11.018.  Google Scholar

show all references

References:
[1]

R. Abu-Saris and Q. Al-Mdallal, On the asymptotic stability of linear system of fractionalorder difference equations, Fract. Calc. Appl. Anal., 16 (2013), 613-629.  doi: 10.2478/s13540-013-0039-2.  Google Scholar

[2]

R. AgarwalD. O'Regan and S. Hristova, Stability of Caputo fractional differential equations by Lyapunov functions, Appl. Math., 60 (2015), 653-676.  doi: 10.1007/s10492-015-0116-4.  Google Scholar

[3]

E. AhmedA. M. A. El-Sayed and H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542-553.  doi: 10.1016/j.jmaa.2006.01.087.  Google Scholar

[4]

J. Audounet, D. Matignon and G. Montseny, Semi-linear diffusive representations for nonlinear fractional differential systems, Nonlinear control in the year 2000, Vol. 1 (Paris), Lecture Notes in Control and Inform. Sci. , 258, Springer, London, (2001), 73–82. doi: 10.1007/BFb0110208.  Google Scholar

[5]

B. BonillaM. Rivero and J. J. Trujillo, On systems of linear fractional differential equations with constant coefficients, Applied Mathematics and Computation, 187 (2007), 68-78.  doi: 10.1016/j.amc.2006.08.104.  Google Scholar

[6]

J. ČermákT. Kisela and L. Nechvátal, Stability regions for linear fractional differential systems and their discretizations, Applied Mathematics and Computation, 219 (2013), 7012-7022.  doi: 10.1016/j.amc.2012.12.019.  Google Scholar

[7]

J. ČermákI. Győri and L. Nechvátal, On explicit stability conditions for a linear fractional difference system, Fract. Calc. Appl. Anal., 18 (2015), 651-672.  doi: 10.1515/fca-2015-0040.  Google Scholar

[8]

E. A. Coddington and N. Levinson, Theory of Differential Equations, McCrow–Hill, New York, 1955.  Google Scholar

[9]

N. D. CongT. S. DoanS. Siegmund and H. T. Tuan, On stable manifolds for planar fractional differential equations, Applied Mathematics and Computation, 226 (2014), 157-168.  doi: 10.1016/j.amc.2013.10.010.  Google Scholar

[10]

N. D. CongT. S. DoanS. Siegmund and H. T. Tuan, Linearized asymptotic stability for fractional differential equations, Electronic Journal of Qualitative Theory of Differential Equations, (2016), 1-13.   Google Scholar

[11]

N. D. CongT. S. DoanS. Siegmund and H. T. Tuan, On stable manifolds for fractional differential equations in high dimensional spaces, Nonlinear Dynamics, 86 (2016), 1885-1894.  doi: 10.1007/s11071-016-3002-z.  Google Scholar

[12]

W. Deng, Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 72 (2010), 1768-1777.  doi: 10.1016/j.na.2009.09.018.  Google Scholar

[13]

K. Diethelm, The Analysis of Fractional Differential Equations. An Application–Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[14]

J. Y. KaminskiR. Shorten and E. Zeheb, Exact stability test and stabilization for fractional systems, Systems Control Lett., 85 (2015), 95-99.  doi: 10.1016/j.sysconle.2015.08.005.  Google Scholar

[15]

P. Lancaster and M. Tismenetsky, The Theory of Matrices. Second Edition, Academic Press, San Diego, 1985.  Google Scholar

[16]

C. Li and Y. Ma, Fractional dynamical system and its linearization theorem, Nonlinear Dynamics, 71 (2013), 621-633.  doi: 10.1007/s11071-012-0601-1.  Google Scholar

[17]

D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational Eng. in Sys. Appl., 2 (1996), 963-968.   Google Scholar

[18]

K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.  Google Scholar

[19]

I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc. , San Diego, CA, 1999.  Google Scholar

[20]

S. G. Samko, A. A. Kilbas and O. I. Maritchev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Swizerland, 1993.  Google Scholar

[21]

J. Shen and J. Lam, Non-existence of finite stable eqilibria in fractional-order nonlinear systems, Automatica, 50 (2014), 547-551.  doi: 10.1016/j.automatica.2013.11.018.  Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[2]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[3]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[4]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[8]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[9]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[10]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[15]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[16]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[17]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[18]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[20]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (129)
  • HTML views (68)
  • Cited by (4)

[Back to Top]