The properties of stability of a compact set $\mathcal{K}$ which is positively invariant for a semiflow $(\Omega× {W^{1,\infty }}([-r,0],\mathbb{R}^n),Π,\mathbb{R}^+)$ determined by a family of nonautonomous FDEs with state-dependent delay taking values in $[0,r]$ are analyzed. The solutions of the variational equation through the orbits of $\mathcal{K}$ induce linear skew-product semiflows on the bundles $\mathcal{K}×{W^{1,\infty }}([-r,0],\mathbb{R}^n)$ and $\mathcal{K}× C([-r,0],\mathbb{R}^n)$ . The coincidence of the upper-Lyapunov exponents for both semiflows is checked, and it is a fundamental tool to prove that the strictly negative character of this upper-Lyapunov exponent is equivalent to the exponential stability of $\mathcal{K}$ in $\Omega×{W^{1,\infty }}([-r,0],\mathbb{R}^n)$ and also to the exponential stability of this compact set when the supremum norm is taken in ${W^{1,\infty }}([-r,0],\mathbb{R}^n)$ . In particular, the existence of a uniformly exponentially stable solution of a uniformly almost periodic FDE ensures the existence of exponentially stable almost periodic solutions.
Citation: |
[1] |
O. Arino, E. Sánchez and A. Fathallah, State-dependent delay differential equations in populations dynamics: Modeling and analysis, Fields Inst. Commun., 29 (2001), 19-36.
![]() ![]() |
[2] |
M. V. Barbarossa and H. O. Walther, Linearized stability for a new class of neutral equations with state-dependent delay, Differ. Equ. Dyn. Syst., 24 (2016), 63-79.
doi: 10.1007/s12591-014-0204-z.![]() ![]() ![]() |
[3] |
Y. Chen, Q. Hu and J. Wu, Second-order differentiability with respect to parameters for differential equations with adaptative delays, Front. Math. China, 5 (2010), 221-286.
doi: 10.1007/s11464-010-0005-9.![]() ![]() ![]() |
[4] |
S.-N. Chow and H. Leiva, Dynamical spectrum for time dependent linear systems in Banach spaces, Japan J. Indust. Appl. Math., 11 (1994), 379-415.
doi: 10.1007/BF03167229.![]() ![]() ![]() |
[5] |
S.-N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces, J. Differential Equations, 120 (1995), 429-477.
doi: 10.1006/jdeq.1995.1117.![]() ![]() ![]() |
[6] |
J. K. Hale and S. M. Verdyun Lunel,
Introduction to Functional Differential Equations Appl. Math. Sciences, 99, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.![]() ![]() ![]() |
[7] |
F. Hartung, On differentiability of solutions with respect to parameters in a class of functional differential equations, Funct. Differ. Equ., 4 (1997), 65-79.
![]() ![]() |
[8] |
F. Hartung, Linearized stability in periodic functional differential equations with state-dependent delays, J. Comput. Appl. Math., 174 (2005), 201-211.
doi: 10.1016/j.cam.2004.04.006.![]() ![]() ![]() |
[9] |
F. Hartung, Differentiability of solutions with respect to the initial data in differential equations with state-dependent delays, J. Dynam. Differential Equations, 23 (2011), 843-884.
doi: 10.1007/s10884-011-9218-1.![]() ![]() ![]() |
[10] |
F. Hartung, On second-order differentiability with respect to parameters for differential equations with state-dependent delays, J. Dynam. Differential Equations, 25 (2013), 1089-1138.
doi: 10.1007/s10884-013-9330-5.![]() ![]() ![]() |
[11] |
F. Hartung, T. Krisztin, H. O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications, Elsevier, North-Holland, 3 (2006), 435-545.
doi: 10.1016/S1874-5725(06)80009-X.![]() ![]() ![]() |
[12] |
X. He and R. de la Llave, Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method Ⅰ: Finitely differentiable, hyperbolic case,
J. Dynam. Differential Equations (2016).
![]() |
[13] |
X. He and R. de la Llave, Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method Ⅱ: Analytic case, J. Differential Equations, 261 (2016), 2068-2108.
doi: 10.1016/j.jde.2016.04.024.![]() ![]() ![]() |
[14] |
Y. Hino, S. Murakami and T. Naito,
Functional Differential Equations with Infinite Delay Lecture Notes in Math. , 1473, Springer-Verlag, Berlin, Heidelberg, New York, 1991.
doi: 10.1007/BFb0084432.![]() ![]() ![]() |
[15] |
Q. Hu, J. Wu and X. Zou, Estimates of periods and global continua of periodic solutions for state-dependent delay equations, SIAM J. Math. Anal., 44 (2012), 2401-2427.
doi: 10.1137/100793712.![]() ![]() ![]() |
[16] |
Q. Hu and J. Wu, Global Hopf bifurcation for differential equations with state-dependent delay, J. Differential Equations, 248 (2010), 2801-2840.
doi: 10.1016/j.jde.2010.03.020.![]() ![]() ![]() |
[17] |
T. Insperger and G. Stépán,
Semi-discretation for Time-Delay Systems. Stability and Engeneering Applications, Appl. Math. Sci. , 178 Springter, New York, 2011.
![]() |
[18] |
T. Krisztin and A. Rezounenko, Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold, J. Differential Equations, 260 (2016), 4454-4472.
doi: 10.1016/j.jde.2015.11.018.![]() ![]() ![]() |
[19] |
J. Mallet-Paret and R. D. Nussbaum, Stability of periodic solutions of state-dependent delay-differential equations, J. Differential Equations, 250 (2011), 4085-4103.
doi: 10.1016/j.jde.2010.10.023.![]() ![]() ![]() |
[20] |
I. Maroto, C. Núñez and R. Obaya, Dynamical properties of nonautonomous functional differential equations with state-dependent delay, Discrete Cont. Dynam. Syst., Ser. A, 37 (2017), 3939-3961.
doi: 10.3934/dcds.2017167.![]() ![]() ![]() |
[21] |
S. Novo, R. Obaya and A. M. Sanz, Exponential stability in non-autonomous delayed equations with applications to neural networks, Discrete Contin. Dyn. Syst., 18 (2007), 517-536.
doi: 10.3934/dcds.2007.18.517.![]() ![]() ![]() |
[22] |
S. Novo, R. Obaya and A. M. Sanz, Stability and extensibility results for abstract skew-product semiflows, J. Differential Equations, 235 (2007), 623-646.
doi: 10.1016/j.jde.2006.12.009.![]() ![]() ![]() |
[23] |
R. J. Sacker and G. R. Sell, Lifting properties in skew-products flows with applications to differential equations Mem. Amer. Math. Soc. Amer. Math. Soc. , Providence, 11 (1977), iv+67 pp.
doi: 10.1090/memo/0190.![]() ![]() ![]() |
[24] |
R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations, 113 (1994), 17-67.
doi: 10.1006/jdeq.1994.1113.![]() ![]() ![]() |
[25] |
W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows Mem. Amer. Math. Soc. , 136 (1998), x+93 pp.
doi: 10.1090/memo/0647.![]() ![]() ![]() |
[26] |
H. Smith,
An Introduction to Delay Differential Equations with Applications to the Life Science Appl. Math. , 57, Springer, New York, 2001.
doi: 10.1007/978-1-4419-7646-8.![]() ![]() ![]() |
[27] |
H. O. Walther, The solution manifold and C1-smoothness for differential equations with state-dependent delay, J. Differential Equations, 195 (2003), 46-65.
doi: 10.1016/j.jde.2003.07.001.![]() ![]() ![]() |
[28] |
H. O. Walther, Smoothness of semiflows for differential equations with state-dependent delays,
J. Math. Sci. 124 (2004).
![]() |
[29] |
J. Wu, Introduction to Neural Dynamics and Signal Transmission Delay, Nonlinear Analysis and Aplications, 6, Walter de Gruyter, Berlin, New York, 2001.
doi: 10.1515/9783110879971.![]() ![]() ![]() |