Method | Meshes | Conditional expectations | Approximation & interpolation |
SSG | sparse grid | SG GH quadrature | SG interpolation |
LTG | TP uniform mesh | TP GH quadrature | Lagrangian |
This is the second part of a series papers on multi-step schemes for solving coupled forward backward stochastic differential equations (FBSDEs). We extend the basic idea in our former paper [W. Zhao, Y. Fu and T. Zhou, SIAM J. Sci. Comput., 36 (2014), pp. A1731-A1751] to solve high-dimensional FBSDEs, by using the spectral sparse grid approximations. The main issue for solving high-dimensional FBSDEs is to build an efficient spatial discretization, and deal with the related high-dimensional conditional expectations and interpolations. In this work, we propose the sparse grid spatial discretization. The sparse grid Gaussian-Hermite quadrature rule is used to approximate the conditional expectations. And for the associated high-dimensional interpolations, we adopt a spectral expansion of functions in polynomial spaces with respect to the spatial variables, and use the sparse grid approximations to recover the expansion coefficients. The FFT algorithm is used to speed up the recovery procedure, and the entire algorithm admits efficient and highly accurate approximations in high dimensions. Several numerical examples are presented to demonstrate the efficiency of the proposed methods.
Citation: |
Table 1. Main techniques used in the SSG and LTG methods for solving FBSDEs. TP: tensor product. SG: sparse grid. GH: Gaussian-Hermite
Method | Meshes | Conditional expectations | Approximation & interpolation |
SSG | sparse grid | SG GH quadrature | SG interpolation |
LTG | TP uniform mesh | TP GH quadrature | Lagrangian |
Table 2. Errors and convergence rates for Example 1 by SSG (Top) and LTG (Bottom)
step number | errors | N=8 | N=16 | N=32 | N=64 | N=128 | CR |
1-step | $\mathcal{E}_Y$ | 3.991E-02 | 2.050E-02 | 1.039E-02 | 5.232E-03 | 2.625E-03 | 0.982 |
$\mathcal{E}_Z$ | 5.186E-02 | 2.649E-02 | 1.339E-02 | 6.733E-03 | 3.377E-03 | 0.986 | |
RT | 2.519 | 4.638 | 9.521 | 19.199 | 38.679 | ||
2-step | $\mathcal{E}_Y$ | 5.620E-03 | 1.456E-03 | 3.670E-04 | 9.182E-05 | 2.286E-05 | 1.987 |
$\mathcal{E}_Z$ | 6.978E-03 | 1.847E-03 | 4.813E-04 | 1.225E-04 | 3.090E-05 | 1.955 | |
RT | 6.852 | 15.596 | 33.401 | 68.541 | 143.552 | ||
3-step | $\mathcal{E}_Y$ | 9.748E-04 | 1.342E-04 | 1.728E-05 | 2.264E-06 | 8.196E-07 | 2.632 |
$\mathcal{E}_Z$ | 3.091E-03 | 3.850E-04 | 4.757E-05 | 6.009E-06 | 8.834E-07 | 2.955 | |
RT | 6.899 | 19.403 | 43.835 | 95.902 | 197.608 | ||
step number | errors | N=8 | N=16 | N=32 | N=64 | N=128 | CR |
1-step | $\mathcal{E}_Y$ | 7.204E-01 | 3.989E-01 | 1.849E-01 | 7.321E-02 | 2.871E-02 | 1.174 |
$\mathcal{E}_Z$ | 2.670E-01 | 1.534E-01 | 7.409E-02 | 3.152E-02 | 1.332E-02 | 1.093 | |
RT | 1.047 | 4.609 | 24.120 | 141.209 | 844.974 | ||
2-step | $\mathcal{E}_Y$ | 4.873E-01 | 1.105E-01 | 2.220E-02 | 4.165E-03 | 7.708E-04 | 2.333 |
$\mathcal{E}_Z$ | 1.999E-01 | 4.706E-02 | 1.174E-02 | 2.494E-03 | 4.159E-04 | 2.205 | |
RT | 3.861 | 12.970 | 60.661 | 363.052 | 2139.540 | ||
3-step | $\mathcal{E}_Y$ | 2.656E-01 | 2.252E-02 | 2.295E-03 | 2.247E-04 | 2.024E-05 | 3.401 |
$\mathcal{E}_Z$ | 1.136E-01 | 9.841E-03 | 1.306E-03 | 1.417E-04 | 1.244E-05 | 3.243 | |
RT | 13.010 | 43.490 | 193.784 | 968.788 | 4929.977 |
Table 3. Errors and convergence rates for Example 2
step number | errors | N=8 | N=16 | N=32 | N=64 | N=128 | CR |
1-step | $\mathcal{E}_Y$ | 6.229E-03 | 3.173E-03 | 1.547E-03 | 7.695E-04 | 3.849E-04 | 1.008 |
$\mathcal{E}_Z$ | 8.693E-02 | 4.335E-02 | 2.165E-02 | 1.082E-02 | 5.411E-03 | 1.001 | |
RT | 4.268 | 9.036 | 17.720 | 35.740 | 76.049 | ||
2-step | $\mathcal{E}_Y$ | 4.126E-05 | 1.148E-05 | 2.251E-06 | 3.986E-07 | 1.051E-07 | 2.208 |
$\mathcal{E}_Z$ | 5.470E-04 | 1.630E-04 | 4.222E-05 | 8.722E-06 | 2.061E-06 | 2.032 | |
RT | 6.986 | 15.926 | 34.530 | 72.690 | 153.092 | ||
3-step | $\mathcal{E}_Y$ | 4.078E-05 | 8.408E-06 | 1.107E-06 | 1.370E-07 | 1.837E-08 | 2.817 |
$\mathcal{E}_Z$ | 4.438E-04 | 5.143E-05 | 7.673E-06 | 1.049E-06 | 1.514E-07 | 2.865 | |
RT | 7.980 | 20.650 | 48.610 | 102.595 | 212.189 |
Table 4. Errors and convergence rates for Example 3
scheme | sparse grid | N=8 | N=16 | N=32 | N=64 | N=128 | CR | |
1-step | $q=3$ $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$ | $\mathcal{E}_Y$ | 5.717E-02 | 2.999E-02 | 1.557E-02 | 8.021E-03 | 4.104E-03 | 0.950 |
$\mathcal{E}_Z$ | 3.129E-02 | 1.575E-02 | 7.988E-03 | 4.057E-03 | 2.057E-03 | 0.981 | ||
RT | 0.107 | 0.226 | 0.389 | 0.627 | 1.268 | |||
2-step | $q=3$ $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$ | $\mathcal{E}_Y$ | 2.766E-03 | 7.861E-04 | 2.091E-04 | 5.396E-05 | 1.371E-05 | 1.918 |
$\mathcal{E}_Z$ | 4.833E-03 | 1.197E-03 | 3.006E-04 | 7.588E-05 | 1.916E-05 | 1.994 | ||
RT | 0.131 | 0.235 | 0.509 | 1.067 | 2.187 | |||
3-step | $q=3$ $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$ | $\mathcal{E}_Y$ | 1.244E-04 | 1.183E-05 | 1.061E-06 | 9.522E-08 | 8.587E-09 | 3.460 |
$\mathcal{E}_Z$ | 3.425E-04 | 4.375E-05 | 5.575E-06 | 7.067E-07 | 8.922E-08 | 2.976 | ||
RT | 0.173 | 0.370 | 0.750 | 1.478 | 3.072 | |||
1-step | $q=4$ $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$ | $\mathcal{E}_Y$ | 1.196E-01 | 6.208E-02 | 3.187E-02 | 1.626E-02 | 8.259E-03 | 0.965 |
$\mathcal{E}_Z$ | 3.445E-02 | 1.735E-02 | 8.772E-03 | 4.439E-03 | 2.244E-03 | 0.985 | ||
RT | 1.682 | 3.153 | 6.178 | 12.934 | 26.182 | |||
2-step | $q=4$ $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$ | $\mathcal{E}_Y$ | 9.114E-03 | 2.817E-03 | 7.851E-04 | 2.087E-04 | 5.426E-05 | 1.854 |
$\mathcal{E}_Z$ | 6.769E-03 | 1.628E-03 | 4.038E-04 | 1.012E-04 | 2.547E-05 | 2.012 | ||
RT | 2.513 | 4.442 | 9.606 | 20.160 | 41.504 | |||
3-step | $q=4$ $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$ | $\mathcal{E}_Y$ | 4.879E-04 | 7.611E-05 | 1.052E-05 | 1.378E-06 | 1.763E-07 | 2.865 |
$\mathcal{E}_Z$ | 1.176E-03 | 1.420E-04 | 1.767E-05 | 2.215E-06 | 2.786E-07 | 3.009 | ||
RT | 1.993 | 5.722 | 13.296 | 28.614 | 59.671 | |||
1-step | $q=5$ $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$ | $\mathcal{E}_Y$ | 2.269E-01 | 1.177E-01 | 6.023E-02 | 3.061E-02 | 1.549E-02 | 0.969 |
$\mathcal{E}_Z$ | 4.345E-02 | 2.196E-02 | 1.110E-02 | 5.608E-03 | 2.829E-03 | 0.985 | ||
RT | 23.196 | 47.566 | 99.318 | 203.587 | 411.991 | |||
2-step | $q=5$ $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$ | $\mathcal{E}_Y$ | 2.941E-02 | 8.713E-03 | 2.376E-03 | 6.223E-04 | 1.600E-04 | 1.885 |
$\mathcal{E}_Z$ | 9.182E-03 | 2.216E-03 | 5.534E-04 | 1.393E-04 | 3.510E-05 | 2.005 | ||
RT | 33.610 | 80.876 | 177.315 | 372.765 | 766.094 | |||
3-step | $q=5$ $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$ | $\mathcal{E}_Y$ | 2.549E-03 | 4.157E-04 | 6.185E-05 | 8.531E-06 | 1.127E-06 | 2.789 |
$\mathcal{E}_Z$ | 2.364E-03 | 2.687E-04 | 3.254E-05 | 4.031E-06 | 5.037E-07 | 3.045 | ||
RT | 36.049 | 105.507 | 245.986 | 530.853 | 1106.870 | |||
1-step | $q=6$ $\mathcal{C}_6^7$ & $\mathcal{G}_6^7$ | $\mathcal{E}_Y$ | 4.068E-01 | 2.117E-01 | 1.084E-01 | 5.500E-02 | 2.779E-02 | 0.969 |
$\mathcal{E}_Z$ | 5.899E-02 | 2.996E-02 | 1.516E-02 | 7.652E-03 | 3.855E-03 | 0.984 | ||
RT | 368.274 | 792.758 | 1640.774 | 3346.529 | 6758.066 | |||
2-step | $q=6$ $\mathcal{C}_6^7$ & $\mathcal{G}_6^7$ | $\mathcal{E}_Y$ | 7.236E-02 | 2.130E-02 | 5.783E-03 | 1.510E-03 | 3.869E-04 | 1.891 |
$\mathcal{E}_Z$ | 1.307E-02 | 3.277E-03 | 8.382E-04 | 2.134E-04 | 5.405E-05 | 1.978 | ||
RT | 1112.524 | 2813.641 | 6114.390 | 12814.473 | 26454.702 | |||
3-step | $q=6$ $\mathcal{C}_6^7$ & $\mathcal{G}_6^7$ | $\mathcal{E}_Y$ | 1.037E-02 | 1.742E-03 | 2.528E-04 | 3.407E-05 | 4.433E-06 | 2.806 |
$\mathcal{E}_Z$ | 3.924E-03 | 4.391E-04 | 5.339E-05 | 6.647E-06 | 8.328E-07 | 3.045 | ||
RT | 594.060 | 1767.938 | 4110.876 | 8853.131 | 18481.311 |
Table 5. Errors and convergence rates for Example 4
scheme | sparse gird | N=8 | N=16 | N=32 | N=64 | N=128 | CR | |
1-step | $q=2$ $\mathcal{C}_2^3$ & $\mathcal{G}_2^3$ | $\mathcal{E}_Y$ | 4.246E-03 | 1.925E-03 | 9.181E-04 | 4.508E-04 | 2.243E-04 | 1.058 |
$\mathcal{E}_Z$ | 1.149E-02 | 4.898E-03 | 2.098E-03 | 9.057E-04 | 3.948E-04 | 1.216 | ||
RT | 0.030 | 0.045 | 0.083 | 0.160 | 0.267 | |||
2-step | $q=2$ $\mathcal{C}_2^3$ & $\mathcal{G}_2^3$ | $\mathcal{E}_Y$ | 4.093E-04 | 8.289E-05 | 1.646E-05 | 3.207E-06 | 6.101E-07 | 2.347 |
$\mathcal{E}_Z$ | 5.429E-03 | 1.395E-03 | 3.568E-04 | 9.099E-05 | 2.315E-05 | 1.968 | ||
RT | 0.032 | 0.059 | 0.090 | 0.171 | 0.327 | |||
3-step | $q=2$ $\mathcal{C}_2^3$ & $\mathcal{G}_2^3$ | $\mathcal{E}_Y$ | 2.459E-05 | 2.651E-06 | 2.695E-07 | 2.658E-08 | 2.538E-09 | 3.312 |
$\mathcal{E}_Z$ | 5.266E-05 | 5.713E-06 | 6.099E-07 | 6.276E-08 | 6.215E-09 | 3.261 | ||
RT | 0.033 | 0.075 | 0.132 | 0.276 | 0.430 | |||
1-step | $q=3$ $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$ | $\mathcal{E}_Y$ | 2.463E-03 | 1.068E-03 | 4.812E-04 | 2.229E-04 | 1.072E-04 | 1.130 |
$\mathcal{E}_Z$ | 3.243E-03 | 1.363E-03 | 5.990E-04 | 2.630E-04 | 1.154E-04 | 1.200 | ||
RT | 0.295 | 0.422 | 0.762 | 1.420 | 2.690 | |||
2-step | $q=3$ $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$ | $\mathcal{E}_Y$ | 2.044E-04 | 7.910E-05 | 1.676E-05 | 3.397E-06 | 6.738E-07 | 2.103 |
$\mathcal{E}_Z$ | 1.073E-03 | 2.444E-04 | 6.285E-05 | 1.632E-05 | 4.227E-06 | 1.988 | ||
RT | 0.352 | 0.717 | 1.385 | 2.610 | 4.946 | |||
3-step | $q=3$ $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$ | $\mathcal{E}_Y$ | 8.103E-06 | 1.743E-06 | 1.890E-07 | 1.942E-08 | 1.933E-09 | 3.055 |
$\mathcal{E}_Z$ | 7.540E-06 | 1.577E-06 | 1.795E-07 | 1.933E-08 | 1.995E-09 | 3.012 | ||
RT | 0.364 | 1.223 | 1.936 | 3.743 | 7.150 | |||
1-step | $q=4$ $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$ | $\mathcal{E}_Y$ | 1.663E-03 | 7.351E-04 | 3.068E-04 | 1.370E-04 | 6.294E-05 | 1.187 |
$\mathcal{E}_Z$ | 1.360E-03 | 5.763E-04 | 2.374E-04 | 1.068E-04 | 4.838E-05 | 1.206 | ||
RT | 3.916 | 8.050 | 15.738 | 29.987 | 55.418 | |||
2-step | $q=4$ $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$ | $\mathcal{E}_Y$ | 6.776E-05 | 4.165E-05 | 1.569E-05 | 3.408E-06 | 6.925E-07 | 1.684 |
$\mathcal{E}_Z$ | 3.665E-04 | 8.033E-05 | 1.727E-05 | 4.479E-06 | 1.191E-06 | 2.070 | ||
RT | 5.064 | 13.279 | 28.974 | 56.345 | 105.155 | |||
3-step | $q=4$ $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$ | $\mathcal{E}_Y$ | 4.932E-06 | 1.065E-06 | 1.111E-07 | 1.115E-08 | 1.087E-09 | 3.087 |
$\mathcal{E}_Z$ | 2.474E-06 | 5.495E-07 | 6.062E-08 | 6.348E-09 | 6.390E-10 | 3.027 | ||
RT | 34.015 | 117.047 | 250.853 | 483.481 | 926.454 | |||
1-step | $q=5$ $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$ | $\mathcal{E}_Y$ | 1.167E-03 | 5.489E-04 | 2.341E-04 | 9.343E-05 | 4.184E-05 | 1.216 |
$\mathcal{E}_Z$ | 6.751E-04 | 3.055E-04 | 1.268E-04 | 5.183E-05 | 2.408E-05 | 1.218 | ||
RT | 58.937 | 134.345 | 289.234 | 570.587 | 1049.247 | |||
2-step | $q=5$ $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$ | $\mathcal{E}_Y$ | 6.572E-05 | 4.173E-05 | 1.246E-05 | 2.548E-06 | 5.087E-07 | 1.806 |
$\mathcal{E}_Z$ | 1.464E-04 | 2.885E-05 | 6.466E-06 | 1.763E-06 | 4.792E-07 | 2.054 | ||
RT | 736.405 | 2004.185 | 4124.286 | 7776.645 | 14561.700 | |||
3-step | $q=5$ $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$ | $\mathcal{E}_Y$ | 1.649E-06 | 6.334E-07 | 9.009E-08 | 9.209E-09 | 9.147E-10 | 2.774 |
$\mathcal{E}_Z$ | 5.318E-07 | 2.072E-07 | 3.079E-08 | 3.274E-09 | 3.372E-10 | 2.723 | ||
RT | 709.587 | 2599.783 | 5916.660 | 11366.633 | 21380.402 |
V. Barthelmann
, E. Novak
and K. Ritter
, High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math., 12 (2000)
, 273-288.
doi: 10.1023/A:1018977404843.![]() ![]() ![]() |
|
C. Bender
and J. Zhang
, Time discretization and Markovian iteration for coupled FBSDEs, Ann. Appl. Probab., 18 (2008)
, 143-177.
doi: 10.1214/07-AAP448.![]() ![]() ![]() |
|
J. M. Bismut
, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973)
, 384-404.
doi: 10.1016/0022-247X(73)90066-8.![]() ![]() ![]() |
|
B. Bouchard
and N. Touzi
, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stoch. Proc. Appl., 111 (2004)
, 175-206.
doi: 10.1016/j.spa.2004.01.001.![]() ![]() ![]() |
|
J. F. Chassagneux
and D. Crisan
, Runge-Kutta schemes for backward stochastic differential equations, Ann. Appl. Probab., 24 (2014)
, 679-720.
doi: 10.1214/13-AAP933.![]() ![]() ![]() |
|
P. Cheridito
, H. M. Soner
, N. Touzi
and N. Victoir
, Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs, Commun. Pur. Appl. Math., 60 (2007)
, 1081-1110.
doi: 10.1002/cpa.20168.![]() ![]() ![]() |
|
D. Crisan
and K. Manolarakis
, Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing, SIAM J. Financial Math., 3 (2012)
, 534-571.
doi: 10.1137/090765766.![]() ![]() ![]() |
|
J. Douglas
, J. Ma
and P. Protter
, Numerical methods for forward-backward stochastic differential equations, Ann. Appl. Probab., 6 (1996)
, 940-968.
doi: 10.1214/aoap/1034968235.![]() ![]() ![]() |
|
A. Fahim
, N. Touzi
and X. Warin
, A probabilistic numerical method for fully nonlinear parabolic PDEs, Ann. Appl. Probab., 21 (2011)
, 1322-1364.
doi: 10.1214/10-AAP723.![]() ![]() ![]() |
|
Y. Fu
, W. Zhao
and T. Zhou
, Multistep schemes for forward backward stochastic differential equations with jumps, J. Sci. Comput., 69 (2016)
, 651-672.
doi: 10.1007/s10915-016-0212-y.![]() ![]() ![]() |
|
W. Guo
, J. Zhang
and J. Zhuo
, A monotone scheme for high-dimensional fully nonlinear PDEs, Ann. Appl. Probab., 25 (2015)
, 1540-1580.
doi: 10.1214/14-AAP1030.![]() ![]() ![]() |
|
N. El Karoui
, C. Kapoudjian
, E. Pardoux
, S. Peng
and M. C. Quenez
, Reflected solutions of backward SDE's and related obstacle problems for PDE's, Ann. Probab., 25 (1997)
, 702-737.
doi: 10.1214/aop/1024404416.![]() ![]() ![]() |
|
N. El Karoui
, S. Peng
and M. C. Quenez
, Backward stochastic differential equations in finance, Math. Financ., 7 (1997)
, 1-71.
doi: 10.1111/1467-9965.00022.![]() ![]() ![]() |
|
T. Kong
, W. Zhao
and T. Zhou
, High order probabilistic numerical schemes for fully nonlinear parabolic PDEs, Commun. Comput. Phys., 18 (2015)
, 1482-1503.
doi: 10.4208/cicp.240515.280815a.![]() ![]() ![]() |
|
T. Kong
, W. Zhao
and T. Zhou
, High order numerical schemes for second order FBSDEs with applications to stochastic optimal control, Commun. Comput. Phys., 21 (2017)
, 808-834.
doi: 10.4208/cicp.OA-2016-0056.![]() ![]() |
|
J. P. Lemor
, E. Gobet
and X. Warin
, A regression-based Monte Carlo method to solve backward stochastic differential equations, Ann. Appl. Probab., 15 (2005)
, 2172-2202.
doi: 10.1214/105051605000000412.![]() ![]() ![]() |
|
Y. Li
, J. Yang
and W. Zhao
, Convergence error estimates of the {C}rank-{N}icolson scheme for solving decoupled {FBSDE}s, Sci. China Math., 60 (2017)
, 923-948.
doi: 10.1007/s11425-016-0178-8.![]() ![]() ![]() |
|
J. Ma
, P. Protter
and J. Yong
, Solving forward-backward stochastic differential equations explicitly -a four step scheme, Probab. Theory Related Fields, 98 (1994)
, 339-359.
doi: 10.1007/BF01192258.![]() ![]() ![]() |
|
J. Ma
, J. Shen
and Y. Zhao
, On numerical approximations of forward-backward stochastic differential equations, SIAM J. Numer. Anal., 46 (2008)
, 2636-2661.
doi: 10.1137/06067393X.![]() ![]() ![]() |
|
G. N. Milstein
and M. V. Tretyakov
, Numerical algorithms for forward-backward stochastic differential equations, SIAM J. Sci. Comput., 28 (2006)
, 561-582.
doi: 10.1137/040614426.![]() ![]() ![]() |
|
F. Nobile
, R. Tempone
and C. Webster
, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46 (2008)
, 2309-2345.
doi: 10.1137/060663660.![]() ![]() ![]() |
|
A. Narayan
and T. Zhou
, Stochastic collocation on unstructured multivariate meshes, Commun. Comput. Phys., 18 (2015)
, 1-36.
doi: 10.4208/cicp.020215.070515a.![]() ![]() ![]() |
|
E. Pardoux
and S. Peng
, Adapted solution of a backward stochastic differential equation, Syst. Control Lett., 14 (1990)
, 55-61.
doi: 10.1016/0167-6911(90)90082-6.![]() ![]() ![]() |
|
E. Pardoux
and S. Tang
, Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Related Fields, 114 (1999)
, 123-150.
doi: 10.1007/s004409970001.![]() ![]() ![]() |
|
S. Peng
, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stoch. Stoch. Repts., 37 (1991)
, 61-74.
doi: 10.1080/17442509108833727.![]() ![]() ![]() |
|
M. J. Ruijter
and C. W. Oosterlee
, Fourier-cosine method for an efficient computation of solutions to BSDEs, SIAM J. Sci. Comput., 37 (2015)
, A859-A889.
doi: 10.1137/130913183.![]() ![]() ![]() |
|
J. Shen
and H. Yu
, Efficient spectral sparse grid methods and applications to high dimensional elliptic problems, SIAM J. Sci. Comput., 32 (2010)
, 3228-3250.
doi: 10.1137/100787842.![]() ![]() ![]() |
|
J. Shen
and H. Yu
, Efficient spectral sparse grid methods and applications to high dimensional elliptic problems Ⅱ unbounded domains, SIAM J. Sci. Comput., 34 (2012)
, A1141-A1164.
doi: 10.1137/110834950.![]() ![]() ![]() |
|
S. A. Smolyak
, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR, 4 (1963)
, 240-243.
![]() |
|
H. M. Soner
, N. Touzi
and J. Zhang
, Wellposedness of second order backward SDEs, Probab. Theory Related Fields,, 153 (2012)
, 149-190.
doi: 10.1007/s00440-011-0342-y.![]() ![]() ![]() |
|
T. Tang
, W. Zhao
and T. Zhou
, Deferred correction methods for forward backward stochastic differential equations, Numer. Math. Theory Methods Appl., 10 (2017)
, 222-242.
doi: 10.4208/nmtma.2017.s02.![]() ![]() ![]() |
|
D. Xiu
and J. S. Hesthaven
, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005)
, 1118-1139.
doi: 10.1137/040615201.![]() ![]() ![]() |
|
G. Zhang
, M. Gunzburger
and W. Zhao
, A sparse-grid method for multi-dimensional backward stochastic differential equations, J. Comput. Math., 31 (2013)
, 221-248.
doi: 10.4208/jcm.1212-m4014.![]() ![]() ![]() |
|
J. Zhang
, A numerical scheme for BSDEs, Ann. Appl. Probab., 14 (2004)
, 459-488.
doi: 10.1214/aoap/1075828058.![]() ![]() ![]() |
|
W. Zhao
, L. Chen
and S. Peng
, A new kind of accurate numerical method for backward stochastic differential equations, SIAM J. Sci. Comput., 28 (2006)
, 1563-1581.
doi: 10.1137/05063341X.![]() ![]() ![]() |
|
W. Zhao
, Y. Fu
and T. Zhou
, New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations, SIAM J. Sci. Comput., 36 (2014)
, A1731-A1751.
doi: 10.1137/130941274.![]() ![]() ![]() |
|
W. Zhao
, Y. Li
and G. Zhang
, A generalized θ-scheme for solving backward stochastic differential equations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012)
, 1585-1603.
doi: 10.3934/dcdsb.2012.17.1585.![]() ![]() ![]() |
|
W. Zhao
, J. Wang
and S. Peng
, Error estimates of the θ-scheme for backward stochastic differential equations, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009)
, 905-924.
doi: 10.3934/dcdsb.2009.12.905.![]() ![]() ![]() |
|
W. Zhao
, G. Zhang
and L. Ju
, A stable multistep scheme for solving backward stochastic differential equations, SIAM J. Numer. Anal., 48 (2010)
, 1369-1394.
doi: 10.1137/09076979X.![]() ![]() ![]() |
|
W. Zhao
, W. Zhang
and L. Ju
, A numerical method and its error estimates for the decoupled forward-backward stochastic differential equations, Commun. Comput. Phys., 15 (2014)
, 618-646.
doi: 10.4208/cicp.280113.190813a.![]() ![]() ![]() |
|
W. Zhao
, W. Zhang
and L. Ju
, A multistep scheme for decoupled forward-backward stochastic differential equations, Numer. Math. Theory Methods Appl., 9 (2016)
, 262-288.
doi: 10.4208/nmtma.2016.m1421.![]() ![]() ![]() |
Sparse grid for CGL
Dimensions v.s. the running time for Example 3 with