Focusing on stochastic dynamics involving continuous states as well as discrete events, this paper investigates dynamical behaviors of stochastic multi-group Lotka-Volterra model with regime switching. The contributions of the paper lie on: (a) giving the sufficient conditions of stochastic permanence for generic stochastic multi-group Lotka-Volterra model, which are much weaker than the existing results in the literature; (b) obtaining the stochastic strong permanence and ergodic property for the mutualistic systems; (c) establishing the almost surely asymptotic estimate of solutions. These can specify some realistic recurring phenomena and reveal the fact that regime switching can suppress the impermanence. A couple of examples and numerical simulations are given to illustrate our results.
Citation: |
J. Bao and J. Shao , Permanence and extinction of regime-switching predator-prey models, SIAM J. Math. Anal., 48 (2016) , 725-739. doi: 10.1137/15M1024512. | |
M. Benaïm and C. Lobry , Lotka-Volterra with randomly fluctuating environments or "how switching between beneficial environments can make survival harder", Ann. Appl. Probab., 26 (2016) , 3754-3785. doi: 10.1214/16-AAP1192. | |
N. H. Du , R. Kon , K. Sato and Y. Takeuchi , Dynamical behavior of Lotka-Volterra competition systems: Non-autonomous bistable case and the effect of telegraph noise, J. Comput. Appl. Math., 170 (2004) , 399-422. doi: 10.1016/j.cam.2004.02.001. | |
A. Friedman, Stochastic Differential Equations and Applications, Dover Publications, Inc. , Mineola, NY, 2006. | |
X. He and K. Gopalsamy , Persistence, attractivity, and delay in facultative mutualism, J. Math. Anal. Appl., 215 (1997) , 154-173. doi: 10.1006/jmaa.1997.5632. | |
Y. Hu , F. Wu and C. Huang , Stochastic Lotka-Volterra models with multiple delays, J. Math. Anal. Appl., 375 (2011) , 42-57. doi: 10.1016/j.jmaa.2010.08.017. | |
G. E. Hutchinson , The Paradox of the plankton, Amer. Nat., 95 (1961) , 137-145. doi: 10.1086/282171. | |
A. M. Il'in , R. Z. Khasminskii and G. Yin , Asymptotic expansions of solutions of integro-differential equations for transition densities of singularly perturbed switching diffusions: Rapid switching, J. Math. Anal. Appl., 238 (1999) , 516-539. doi: 10.1006/jmaa.1998.6532. | |
R. Khasminskii, Stochastic Stability of Differential Equations, 2nd edition, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0. | |
S. D. Lawley , J. C. Mattingly and M. C. Reed , Sensitivity to switching rates in stochastically switched ODEs, Commun. Math. Sci., 12 (2014) , 1343-1352. doi: 10.4310/CMS.2014.v12.n7.a9. | |
X. Li , D. Jiang and X. Mao , Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., 232 (2009) , 427-448. doi: 10.1016/j.cam.2009.06.021. | |
X. Li and G. Yin , Logistic models with regime switching: Permanence and ergodicity, J. Math. Anal. Appl., 441 (2016) , 593-611. doi: 10.1016/j.jmaa.2016.04.016. | |
R. Liptser , A strong law of large numbers for local martingale, Stochastics, 3 (1980) , 217-228. doi: 10.1080/17442508008833146. | |
H. Liu , X. Li and Q. Yang , The ergodic property and positive recurrence of a multi-group Lotka-Volterra mutualistic system with regime switching, Systems Control Lett., 62 (2013) , 805-810. doi: 10.1016/j.sysconle.2013.06.002. | |
M. Liu , Global asymptotic stability of stochastic Lotka-Volterra systems with infinite delays, IMA J. Appl. Math., 80 (2015) , 1431-1453. doi: 10.1093/imamat/hxv002. | |
A. J. Lotka, Elements of Physical Biology, William and Wilkins, Baltimore, 1925. | |
Q. Luo and X. Mao , tochastic population dynamics under regime switching Ⅱ, J. Math. Anal. Appl., 355 (2009) , 577-593. doi: 10.1016/j.jmaa.2009.02.010. | |
X. Mao, Stochastic Differential Equations and Applications, 2nd edition, Horwwood Publishing, Chichester, 2008. doi: 10.1533/9780857099402. | |
X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006. doi: 10.1142/p473. | |
X. Mao , Stationary distribution of stochastic population systems, Systems Control Lett., 60 (2011) , 398-405. doi: 10.1016/j.sysconle.2011.02.013. | |
D. H. Nguyen and G. Yin , Coexistence and exclusion of stochastic competitive Lotka-Volterra models, J. Differential Equations, 267 (2017) , 1192-1225. doi: 10.1016/j.jde.2016.10.005. | |
M. Slatkin , The dynamics of a population in a Markovian environment, Ecology, 59 (1978) , 249-256. doi: 10.2307/1936370. | |
Y. Takeuchi , N. H. Du , N. T. Hieu and K. Sato , Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006) , 938-957. doi: 10.1016/j.jmaa.2005.11.009. | |
V. Volterra , Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Lincei., 2 (1926) , 31-113. | |
F. Wu and Y. Xu , Stochastic Lotka-Volterra population dynamics with infinite delay, SIAM J. Appl. Math., 70 (2009) , 641-657. doi: 10.1137/080719194. | |
G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, 2nd edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-4346-9. | |
G. Yin and C. Zhu, Hybrid Switching Diffusions Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6. | |
C. Zhu and G. Yin , On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal., 71 (2009) , e1370-e1379. doi: 10.1016/j.na.2009.01.166. | |
C. Zhu and G. Yin , On competitive Lotka-Volterra model in random environments, J. Math. Anal. Appl., 357 (2009) , 154-170. doi: 10.1016/j.jmaa.2009.03.066. |
Sample paths of
A sample path of
Sample paths of
Case 1. A sample path of
Case 2. A sample path of
A sample path of
Stationary distribution and scatter plot of a sample path of state-
Stationary distribution and scatter plot of a sample path of state-
Case 1. A sample path of
Case 1. Stationary distribution and scatter plot of a sample path of the switching system in Example 7.2
Case 1. A sample path in time average of the switching system in Example 7.2
Case2. A sample path of