Focusing on stochastic dynamics involving continuous states as well as discrete events, this paper investigates dynamical behaviors of stochastic multi-group Lotka-Volterra model with regime switching. The contributions of the paper lie on: (a) giving the sufficient conditions of stochastic permanence for generic stochastic multi-group Lotka-Volterra model, which are much weaker than the existing results in the literature; (b) obtaining the stochastic strong permanence and ergodic property for the mutualistic systems; (c) establishing the almost surely asymptotic estimate of solutions. These can specify some realistic recurring phenomena and reveal the fact that regime switching can suppress the impermanence. A couple of examples and numerical simulations are given to illustrate our results.
Citation: |
J. Bao
and J. Shao
, Permanence and extinction of regime-switching predator-prey models, SIAM J. Math. Anal., 48 (2016)
, 725-739.
doi: 10.1137/15M1024512.![]() ![]() ![]() |
|
M. Benaïm
and C. Lobry
, Lotka-Volterra with randomly fluctuating environments or "how switching between beneficial environments can make survival harder", Ann. Appl. Probab., 26 (2016)
, 3754-3785.
doi: 10.1214/16-AAP1192.![]() ![]() ![]() |
|
N. H. Du
, R. Kon
, K. Sato
and Y. Takeuchi
, Dynamical behavior of Lotka-Volterra competition systems: Non-autonomous bistable case and the effect of telegraph noise, J. Comput. Appl. Math., 170 (2004)
, 399-422.
doi: 10.1016/j.cam.2004.02.001.![]() ![]() ![]() |
|
A. Friedman,
Stochastic Differential Equations and Applications, Dover Publications, Inc. , Mineola, NY, 2006.
![]() ![]() |
|
X. He
and K. Gopalsamy
, Persistence, attractivity, and delay in facultative mutualism, J. Math. Anal. Appl., 215 (1997)
, 154-173.
doi: 10.1006/jmaa.1997.5632.![]() ![]() ![]() |
|
Y. Hu
, F. Wu
and C. Huang
, Stochastic Lotka-Volterra models with multiple delays, J. Math. Anal. Appl., 375 (2011)
, 42-57.
doi: 10.1016/j.jmaa.2010.08.017.![]() ![]() ![]() |
|
G. E. Hutchinson
, The Paradox of the plankton, Amer. Nat., 95 (1961)
, 137-145.
doi: 10.1086/282171.![]() ![]() |
|
A. M. Il'in
, R. Z. Khasminskii
and G. Yin
, Asymptotic expansions of solutions of integro-differential equations for transition densities of singularly perturbed switching diffusions: Rapid switching, J. Math. Anal. Appl., 238 (1999)
, 516-539.
doi: 10.1006/jmaa.1998.6532.![]() ![]() ![]() |
|
R. Khasminskii,
Stochastic Stability of Differential Equations, 2nd edition, Springer, Heidelberg, 2012.
doi: 10.1007/978-3-642-23280-0.![]() ![]() ![]() |
|
S. D. Lawley
, J. C. Mattingly
and M. C. Reed
, Sensitivity to switching rates in stochastically switched ODEs, Commun. Math. Sci., 12 (2014)
, 1343-1352.
doi: 10.4310/CMS.2014.v12.n7.a9.![]() ![]() ![]() |
|
X. Li
, D. Jiang
and X. Mao
, Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., 232 (2009)
, 427-448.
doi: 10.1016/j.cam.2009.06.021.![]() ![]() ![]() |
|
X. Li
and G. Yin
, Logistic models with regime switching: Permanence and ergodicity, J. Math. Anal. Appl., 441 (2016)
, 593-611.
doi: 10.1016/j.jmaa.2016.04.016.![]() ![]() ![]() |
|
R. Liptser
, A strong law of large numbers for local martingale, Stochastics, 3 (1980)
, 217-228.
doi: 10.1080/17442508008833146.![]() ![]() ![]() |
|
H. Liu
, X. Li
and Q. Yang
, The ergodic property and positive recurrence of a multi-group Lotka-Volterra mutualistic system with regime switching, Systems Control Lett., 62 (2013)
, 805-810.
doi: 10.1016/j.sysconle.2013.06.002.![]() ![]() ![]() |
|
M. Liu
, Global asymptotic stability of stochastic Lotka-Volterra systems with infinite delays, IMA J. Appl. Math., 80 (2015)
, 1431-1453.
doi: 10.1093/imamat/hxv002.![]() ![]() ![]() |
|
A. J. Lotka,
Elements of Physical Biology, William and Wilkins, Baltimore, 1925.
![]() |
|
Q. Luo
and X. Mao
, tochastic population dynamics under regime switching Ⅱ, J. Math. Anal. Appl., 355 (2009)
, 577-593.
doi: 10.1016/j.jmaa.2009.02.010.![]() ![]() ![]() |
|
X. Mao,
Stochastic Differential Equations and Applications, 2nd edition, Horwwood Publishing, Chichester, 2008.
doi: 10.1533/9780857099402.![]() ![]() ![]() |
|
X. Mao and C. Yuan,
Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006.
doi: 10.1142/p473.![]() ![]() ![]() |
|
X. Mao
, Stationary distribution of stochastic population systems, Systems Control Lett., 60 (2011)
, 398-405.
doi: 10.1016/j.sysconle.2011.02.013.![]() ![]() ![]() |
|
D. H. Nguyen
and G. Yin
, Coexistence and exclusion of stochastic competitive Lotka-Volterra models, J. Differential Equations, 267 (2017)
, 1192-1225.
doi: 10.1016/j.jde.2016.10.005.![]() ![]() ![]() |
|
M. Slatkin
, The dynamics of a population in a Markovian environment, Ecology, 59 (1978)
, 249-256.
doi: 10.2307/1936370.![]() ![]() |
|
Y. Takeuchi
, N. H. Du
, N. T. Hieu
and K. Sato
, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006)
, 938-957.
doi: 10.1016/j.jmaa.2005.11.009.![]() ![]() ![]() |
|
V. Volterra
, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Lincei., 2 (1926)
, 31-113.
![]() |
|
F. Wu
and Y. Xu
, Stochastic Lotka-Volterra population dynamics with infinite delay, SIAM J. Appl. Math., 70 (2009)
, 641-657.
doi: 10.1137/080719194.![]() ![]() ![]() |
|
G. Yin and Q. Zhang,
Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, 2nd edition, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4346-9.![]() ![]() ![]() |
|
G. Yin and C. Zhu,
Hybrid Switching Diffusions Properties and Applications, Springer, New York, 2010.
doi: 10.1007/978-1-4419-1105-6.![]() ![]() ![]() |
|
C. Zhu
and G. Yin
, On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal., 71 (2009)
, e1370-e1379.
doi: 10.1016/j.na.2009.01.166.![]() ![]() ![]() |
|
C. Zhu
and G. Yin
, On competitive Lotka-Volterra model in random environments, J. Math. Anal. Appl., 357 (2009)
, 154-170.
doi: 10.1016/j.jmaa.2009.03.066.![]() ![]() ![]() |
Sample paths of
A sample path of
Sample paths of
Case 1. A sample path of
Case 2. A sample path of
A sample path of
Stationary distribution and scatter plot of a sample path of state-
Stationary distribution and scatter plot of a sample path of state-
Case 1. A sample path of
Case 1. Stationary distribution and scatter plot of a sample path of the switching system in Example 7.2
Case 1. A sample path in time average of the switching system in Example 7.2
Case2. A sample path of