\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A preconditioned fast Hermite finite element method for space-fractional diffusion equations

  • * Corresponding author: Aijie Cheng

    * Corresponding author: Aijie Cheng 
Abstract Full Text(HTML) Figure(0) / Table(4) Related Papers Cited by
  • We develop a fast Hermite finite element method for a one-dimensional space-fractional diffusion equation, by proving that the stiffness matrix of the method can be expressed as a Toeplitz block matrix. Then a block circulant preconditioner is presented. Numerical results are presented to show the utility of the fast method.

    Mathematics Subject Classification: Primary:35R11, 65N30, 65F10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The condition number of stiffness matrix $\mathsf{A}$ with $K=1$, $\gamma=0.5$, $\beta=0.5$

    h $2^{-8} $ $2^{-9} $$2^{-10} $
    $Cond(\mathsf{A})$ $ 2.329917 \times 10^{6}$ $ 9.320396 \times 10^{6}$ $ 3.728232 \times 10^{7}$
     | Show Table
    DownLoad: CSV

    Table 2.  The $L^2$ error and $H^{1-\frac{\beta}{2}}$ error of the cubic Hermite element method with $\beta=0.1,0.5,0.9$

    $\beta$hDOF $ \|u_h - u \|_{L^2}$order $ \|u_h - u \|_{H^{1-\frac{\beta}{2}}}$order
    0.5 $2^{-3} $16 $ 4.872892 \times 10^{-4}$ $ 2.512934 \times 10^{-3}$
    $2^{-4} $32 $ 3.573631 \times 10^{-5}$3.7693 $ 2.576521 \times 10^{-4}$3.2858
    $2^{-5} $64 $ 2.236217 \times 10^{-6}$3.9982 $ 2.481970 \times 10^{-5}$3.3758
    $2^{-6} $128$ 1.342295 \times 10^{-7}$4.0582$ 2.249708 \times 10^{-6}$3.4636
    $2^{-7} $256$ 7.909661 \times 10^{-9}$4.0849$ 2.033970 \times 10^{-7}$3.4673
    0.1 $2^{-3} $16 $ 7.851432 \times 10^{-4}$ $ 8.011606 \times 10^{-3}$
    $2^{-4} $32 $ 6.192597 \times 10^{-5}$3.6643 $ 1.304843 \times 10^{-3}$2.6352
    $2^{-5} $64 $ 4.208159 \times 10^{-6}$3.8792 $ 1.805192 \times 10^{-4}$2.8536
    $2^{-6} $128$ 2.713900 \times 10^{-7}$3.9547$ 2.295487 \times 10^{-5}$2.9752
    $2^{-7} $256$ 1.794745 \times 10^{-8}$3.9185$ 2.808095 \times 10^{-6}$3.0311
    0.9 $2^{-3} $16 $ 3.622149 \times 10^{-4}$ $ 4.846137 \times 10^{-4}$
    $2^{-4} $32 $ 2.767086 \times 10^{-5}$3.7104 $ 4.110739 \times 10^{-5}$3.5593
    $2^{-5} $64 $ 1.826287 \times 10^{-6}$3.9213 $ 3.012015 \times 10^{-6}$3.7705
    $2^{-6} $128$ 1.180438 \times 10^{-7}$3.9515$ 2.132241 \times 10^{-7}$3.8202
    $2^{-7} $256$ 7.376961 \times 10^{-9}$4.0001$ 1.415327 \times 10^{-8}$3.9131
     | Show Table
    DownLoad: CSV

    Table 3.  Performance of Gauss, CGS methods with $\beta=0.5$

    GaussCGS
    hCPU(s)Itr. # CPU(s)Itr. #
    $2^{-6}$0.09160.2103137
    $2^{-7}$0.48651.5369272
    $2^{-8}$3.58589.8734415
    $2^{-9}$24.477462.7682665
    $2^{-10}$186.9874391.5595899
    $2^{-11}$1485.14502731.07511676
    $2^{-12}$out of memoryout of memory
     | Show Table
    DownLoad: CSV

    Table 4.  Performance of FCGS, SFCGS and PFCGS methods with $\beta=0.5$

    FCGSSFCGSCFCGS
    hCPU(s)Itr. # CPU(s)Itr. # CPU(s)Itr. #
    $2^{-6}$0.08321370.030570.03419
    $2^{-7}$0.18092720.035870.041910
    $2^{-8}$0.28904150.050370.044511
    $2^{-9}$0.99076650.068080.065312
    $2^{-10}$2.45258990.093280.104614
    $2^{-11}$16.075216760.153690.242216
    $2^{-12}$26.475164210.191490.595519
    $2^{-13}$N/A $>$ 30,0000.6319101.410722
     | Show Table
    DownLoad: CSV
  •   T. Basu  and  H. Wang , A fast second-order finite difference method for space-fractional diffusion equations, Int. J. Numer. Anal. Mod., 9 (2012) , 658-666. 
      D. Benson , S. W. Wheatcraft  and  M. M. Meerschaert , The fractional-order governing equation of Lévy motion, Water Resour. Res., 36 (2000) , 1413-1423.  doi: 10.1029/2000WR900032.
      W. Bu , Y. Tang  and  J. Yang , Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys., 276 (2014) , 26-38.  doi: 10.1016/j.jcp.2014.07.023.
      R. H. Chan  and  M. K. Ng , Conjugate gradient methods for Toeplitz systems, SIAM Review, 38 (1996) , 427-482.  doi: 10.1137/S0036144594276474.
      R. H. Chan , Circulant preconditioners for Hermitian Toeplitz systems, SIAM Journal on Matrix Analysis and Applications, 10 (1989) , 542-550.  doi: 10.1137/0610039.
      R. H. Chan  and  X. Q. Jin , A family of block preconditioners for block systems, SIAM journal on scientific and statistical computing, 13 (1992) , 1218-1235.  doi: 10.1137/0913070.
      P. J. Davis, Circulant Matrices, Wiley-Intersciences, New York, 1979.
      W. Deng , Finite element method for the space and time fractional Fokker-Planck equation, SIAM Journal on Numerical Analysis, 47 (2008) , 204-226.  doi: 10.1137/080714130.
      K. Diethelm  and  A. D. Freed , An efficient algorithm for the evaluation of convolution integrals, Computers and Mathematics with Applications, 51 (2006) , 204-226.  doi: 10.1016/j.camwa.2005.07.010.
      N. Du  and  H. Wang , A fast finite element method for space-fractional dispersion equations on bounded domains in $\mathbb{R}^2$, SIAM J. Sci. Comput., 37 (2015) , A1614-A1635.  doi: 10.1137/15M1007458.
      V. J. Ervin  and  J. P. Roop , Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods for Partial Differential Equations, 22 (2005) , 558-576.  doi: 10.1002/num.20112.
      V. J. Ervin  and  J. P. Roop , Variational Solution of Fractional Advection Dispersion Equations on Bounded Domains in $R^{d}$, Numer. Methods for Partial Differential Equations, 23 (2007) , 256-281.  doi: 10.1002/num.20169.
      R. M. Gray , Toeplitz and circulant matrices: A review, Communications and Information Theory, 2 (2016) , 155-239.  doi: 10.1561/0100000006.
      J. Jia  and  H. Wang , A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh, J. Comput. Phys., 299 (2015) , 842-862.  doi: 10.1016/j.jcp.2015.06.028.
      Y. Jiang  and  X. Xu , Multigrid methods for space fractional partial differential equations, J. Comput. Phys., 302 (2015) , 374-392.  doi: 10.1016/j.jcp.2015.08.052.
      S. L. Lei  and  H. W. Sun , A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242 (2013) , 715-725.  doi: 10.1016/j.jcp.2013.02.025.
      C. Li , Z. Zhao  and  Y. Q. Chen , Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Computers and Mathematics with Applications, 62 (2011) , 855-875.  doi: 10.1016/j.camwa.2011.02.045.
      X. Li  and  C. Xu , The existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010) , 1016-1051.  doi: 10.4208/cicp.020709.221209a.
      F. R. Lin , S. W. Yang  and  X. Q. Jin , Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys., 256 (2014) , 109-117.  doi: 10.1016/j.jcp.2013.07.040.
      Y. Lin  and  C. Xu , Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007) , 1533-1552.  doi: 10.1016/j.jcp.2007.02.001.
      F. Liu , V. Anh  and  I. Turner , Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166 (2014) , 209-219.  doi: 10.1016/j.cam.2003.09.028.
      C.~W. Lv  and  C. Xu , Improved error estimates of a finite difference/spectral method for time-fractional diffusion equations, Int. J. Numer. Anal. Mod., 12 (2015) , 384-400. 
      M. M. Meerschaert , H. P. Scheffler  and  C. Tadjeran , Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 211 (2006) , 249-261.  doi: 10.1016/j.jcp.2005.05.017.
      M. M. Meerschaert  and  C. Tadjeran , Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004) , 65-77.  doi: 10.1016/j.cam.2004.01.033.
      R. Metzler  and  J. Klafter , The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000) , 1-77.  doi: 10.1016/S0370-1573(00)00070-3.
      H. K. Pang  and  H. W. Sun , Multigrid method for fractional diffusion equations, J. Comput. Phys., 231 (2012) , 693-703.  doi: 10.1016/j.jcp.2011.10.005.
      I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
      Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. , SIAM, Rhode Island, 2003. doi: 10.1137/1. 9780898718003.
      H. G. Sun , W. Chen  and  Y. Q. Chen , Fractional differential models for anomalous diffusion, Physica A: Statistical Mechanics and its Applications, 389 (2010) , 2719-2724.  doi: 10.1016/j.physa.2010.02.030.
      H. Tian , H. Wang  and  W. Q. Wang , An efficient collocation method for a non-local diffusion model, Int. J. Numer. Anal. Mod., 10 (2013) , 815-825. 
      P. Vabishchevich , Numerical solution of nonstationary problems for a convection and a space-fractional diffusion equation, Int. J. Numer. Anal. Mod., 13 (2016) , 296-309. 
      H. Wang  and  D. P. Yang , Wellposedness of variable-coefficient conservative fractional elliptic differential equations, SIAM Journal on Numerical Analysis, 51 (2013) , 1088-1107.  doi: 10.1137/120892295.
      H. Wang , D. P. Yang  and  S. F. Zhu , Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations, Journal of Scientific Computing, 70 (2017) , 429-449.  doi: 10.1007/s10915-016-0196-7.
      H. Wang  and  X. H. Zhang , A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations, J. Comput. Phys., 281 (2015) , 67-81.  doi: 10.1016/j.jcp.2014.10.018.
      H. Wang  and  T. Basu , A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput., 34 (2012) , A2444-A2458.  doi: 10.1137/12086491X.
      H. Wang  and  N. Du , A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations, J. Comput. Phys., 240 (2013) , 49-57.  doi: 10.1016/j.jcp.2012.07.045.
      H. Wang , K. Wang  and  T. Sircar , A direct $O(N\log^2 N)$ finite difference method for fractional diffusion equations, J. Comput. Phys., 229 (2010) , 8095-8104.  doi: 10.1016/j.jcp.2010.07.011.
      L. L. Wei , Y. N. He  and  Y. Zhang , Numerical analysis of the fractional seventh-order KdV equation using an implicit fully discrete local discontinuous Galerkin method, Int. J. Numer. Anal. Mod., 10 (2013) , 430-444. 
  • 加载中

Tables(4)

SHARE

Article Metrics

HTML views(1008) PDF downloads(317) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return