\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth

  • * Corresponding author

    * Corresponding author 

QW is partially supported by NSF-China (Grant 11501460)

Abstract Full Text(HTML) Figure(6) Related Papers Cited by
  • This paper investigates the formation of time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model with a focus on the effect of cellular growth. We carry out rigorous Hopf bifurcation analysis to obtain the bifurcation values, spatial profiles and time period associated with these oscillating patterns. Moreover, the stability of the periodic solutions is investigated and it provides a selection mechanism of stable time-periodic mode which suggests that only large domains support the formation of these periodic patterns. Another main result of this paper reveals that cellular growth is responsible for the emergence and stabilization of the oscillating patterns observed in the 3×3 system, while the system admits a Lyapunov functional in the absence of cellular growth. Global existence and boundedness of the system in 2D are proved thanks to this Lyapunov functional. Finally, we provide some numerical simulations to illustrate and support our theoretical findings.

    Mathematics Subject Classification: Primary:92C17, 35B10, 35B32, 35B35, 35B36, 35K20, 37K45, 37K50, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Bifurcation diagrams of $\rho_k(s)$ around $(\bar u,\bar v,\bar w)$. The stable bifurcation curve is plotted in solid lines and the unstable bifurcation curve is plotted in imaginary line. The branch $\rho_{k}(s)$ around $(\bar u,\bar v,\bar w,\chi_{k})$ is always unstable if $k\neq k_0$, while the turning direction of $\rho_{k_0}(s)$ determines its stability

    Figure 2.  Initiation and development of time-periodic spatial patterns to (1.1) over $(0,6)$ with initial data being small perturbations of $(\bar u,\bar v,\bar w)$. System parameters are chosen to be $d_1=5$, $d_2=0.1$, $\mu_1=\mu_2=1$, $\lambda=5$, $\xi=0.1$ and $\chi=80$. Our theoretical results indicate that the homogeneous equilibrium loses its stability at $\chi_0=\chi^H_{2}\approx 63.2$ through Hopf bifurcation to a stable time-periodic pattern which has spatial profile $\cos \frac{\pi x}{3}$ and period $T\approx 8$. Space and time grid sizes are $\Delta x=0.02$ and $\Delta t=0.05$. The numerical simulations are in good agreement with our theoretical findings

    Figure 3.  In each subfigure, we plot in the 3D $u$-$v$-$w$ phase space the trajectories for specific locations $x=1,2,...6$ which converge to enclosed orbits. $\Delta x=0.02$ and $\Delta t=0.05$

    Figure 4.  Effect of cellular growth on the pattern formation of $u$-species, where we choose $\mu_1=\mu_2$. System parameters are chosen to be $d_1=8$, $d_2=0.5$, $\chi=130$ and $\xi=0.4$. Initial data are taken to be small perturbations of $(\bar u,\bar v,\bar w)$. Space and time grid sizes are $\Delta x=L/500=0.012$ and $\Delta t=0.05$. We observe that the cellular growth rate $\mu$ supports the formation of periodic patterns. However, the periodic pattern disappears at $\mu\approx 2.1$, for which we surmise that the oscillating solutions become unstable and develop into a stable stationary pattern

    Figure 5.  Effect of domain size on the pattern formation of $u$-species. We choose the system parameters to be the same as those in Figure 3 except that $\chi$ is slightly larger than $\chi_{k_0}$. $\Delta x=L/500$ and $\Delta t=0.05$ in each graph. Our simulations support our theoretical findings that large domains support periodic patterns with higher modes, however when the domain size is small, therefore does not exist time-periodic solutions that bifurcate from the homogeneous solution

    Figure 6.  Pattern formation of $u$-species in (2.1) when chemotaxis rate $\chi$ is far away from $\chi_{k_0}$=63.2

  •   N. D. Alikakos , $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979) , 827-868.  doi: 10.1080/03605307908820113.
      H. Amann , Hopf bifurcation in quasilinear reaction-diffusion systems, Delay Differential Equations and Dynamical Systems, Lecture Notes in Mathematics, 1475 (1991) , 53-63.  doi: 10.1007/BFb0083479.
      H. Amann , Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differential Integral Equations, 3 (1990) , 13-75. 
      H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, differential operators and nonlinear analysis, Teubner, Stuttgart, Leipzig, 133 (1993), 9-126 doi: 10.1007/978-3-663-11336-2_1.
      R. Bellman, Stability Theory of Differential Equations, McGraw-Hill Book Company, Inc. , New York-Toronto-London, 1953. xiii+166 pp.
      N. Bellomo , A. Bellouquid , Y. Tao  and  M. Winkler , Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015) , 1663-1763.  doi: 10.1142/S021820251550044X.
      P. Biler , I. Espejo  and  E. Guerra , Blow-up in higher dimensional two species chemotactic systems, Commun. Pure Appl. Anal., 12 (2013) , 89-98.  doi: 10.3934/cpaa.2013.12.89.
      P. Biler  and  T. Nadzieja , Existence and nonexistence of solutions for a model of gravitational interaction of particles. Ⅰ., Colloq. Math., 66 (1994) , 319-334. 
      S. Y. A. Chang  and  P. Yang , Conformal deformation of metric on $S^2$, J. Differential Geom., 27 (1988) , 259-296.  doi: 10.4310/jdg/1214441783.
      A. Chertock , A. Kurganov , X. Wang  and  Y. Wu , On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012) , 51-95.  doi: 10.3934/krm.2012.5.51.
      S. N. Chow  and  J. Mallet-Paret , Integral averaging and bifurcation, J. Differential Equations, 26 (1977) , 112-159.  doi: 10.1016/0022-0396(77)90101-2.
      C. Conca , E. Espejo  and  K. Vilches , Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\mathbb{R}^2$, European J. Appl. Math., 22 (2011) , 553-580.  doi: 10.1017/S0956792511000258.
      M. G. Crandall  and  P. H. Rabinowitz , The Hopf bifurcation theorem in infinite dimensions, Arch. Rational Mech. Anal., 67 (1977) , 53-72.  doi: 10.1007/BF00280827.
      E. N. Dancer , On stability and Hopf bifurcations for chemotaxis systems, Methods Appl. Anal., 8 (2001) , 245-256.  doi: 10.4310/MAA.2001.v8.n2.a3.
      S. I. Ei , H. Izuhara  and  M. Mimura , Spatio-temporal oscillations in the Keller-Segel system with logistic growth, Phys. D, 277 (2014) , 1-21.  doi: 10.1016/j.physd.2014.03.002.
      E. Espejo , K. Vilches  and  C. Conca , Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in $\mathbb {R}^2$, European J. Appl. Math., 24 (2013) , 297-313.  doi: 10.1017/S0956792512000411.
      G. Gerisch , Chemotaxis in dictyostelium, Annu. Rev. Physiol., 44 (1982) , 535-552.  doi: 10.1146/annurev.ph.44.030182.002535.
      P. Haastert  and  P. Devreotes , Chemotaxis: Signalling the way forward, Nat. Rev. Mol. Cell Biol., 5 (2004) , 626-634.  doi: 10.1038/nrm1435.
      B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, London Mathematical Society Lecture Note Series, 41. Cambridge University Press, Cambridge-New York, 1981. v+311 pp. (microfiche insert).
      D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 1981. doi: 10.1007/BFb0089647.
      K. Hepp  and  E. H. Lieb , Phase transition in reservoir driven open systems with applications to lasers and superconductors, Condensed Matter Physics and Exactly Soluble Models, (2004) , 145--175.  doi: 10.1007/978-3-662-06390-3_13.
      T. Hillen  and  K. J. Painter , A user's guidence to PDE models for chemotaxis, J. Math. Biol., 58 (2009) , 183-217.  doi: 10.1007/s00285-008-0201-3.
      D. Horstmann , From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅰ., Jahresber DMV, 105 (2003) , 103-165. 
      D. Horstmann , From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ., Jahresber DMV, 106 (2004) , 51-69. 
      D. Horstmann , Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011) , 231-270.  doi: 10.1007/s00332-010-9082-x.
      G. Iooss , Existence et stabilité de la solution périodique secondaire intervenant dans les problémes d'evolution du type Navier-Stokes, Arch. Rational Mech. Anal., 47 (1972) , 301-329.  doi: 10.1007/BF00281637.
      V. Iudovic , Stability of steady flows of viscous incompressible fluids, Soviet Physics Dokl., 10 (1965) , 293-295. 
      V. Iudovic , On the stability of self-oscillations of a liquid, Soviet Physics Dokl., 11 (1970) , 1543-1546. 
      V. Iudovic , Appearance of auto-oscillations in a fluid, Prikl. Mat. Meh., 35 (1971) , 638-655.  doi: 10.1016/0021-8928(71)90053-0.
      D. D. Joseph, Stability of Fluid Motions. I. , Springer Tracts in Natural Philosophy, Vol. 27. Springer-Verlag, Berlin-New York, 1976. xiii+282 pp. doi: 10.1007/978-3-642-80991-0.
      D. D. Joseph  and  D. Nield , Stability of bifurcating time-periodic and steady solutions of arbitrary amplitude, Arch. Rational Mech. Anal., 58 (1975) , 369-380.  doi: 10.1007/BF00250296.
      D. D. Joseph  and  D. H. Sattinger , Bifurcating time periodic solutions and their stability, Arch. Rational Mech. Anal., 45 (1972) , 79-109.  doi: 10.1007/BF00253039.
      T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995. xxii+619 pp. ISBN: 3-540-58661-X doi: 10.1007/978-3-642-66282-9.
      E. F. Keller  and  L. A. Segel , Inition of slime mold aggregation view as an instability, J. Theoret. Biol., 26 (1970) , 399-415.  doi: 10.1016/0022-5193(70)90092-5.
      E. F. Keller  and  L. A. Segel , Model for chemotaxis, J. Theoret. Biol., 30 (1971) , 225-234.  doi: 10.1016/0022-5193(71)90050-6.
      E. F. Keller  and  L. A. Segel , Traveling bands of chemotactic bacteria: A Theretical Analysis, J. Theoret. Biol., 30 (1971) , 235-248.  doi: 10.1016/0022-5193(71)90051-8.
      K. Kishimoto  and  H. Weinberger , The spatial homogeneity of stable equilibria of some reaction-diffusion systems in convex domains, J. Differential Equations, 58 (1985) , 15-21.  doi: 10.1016/0022-0396(85)90020-8.
      O. A. Lady${\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over z} }$enskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, American Mathematical Society, (1967), 736pp.
      P. Liu , J. Shi  and  Z. A. Wang , Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013) , 2597-2625.  doi: 10.3934/dcdsb.2013.18.2597.
      Y. Lou  and  W.-M. Ni , Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996) , 79-131.  doi: 10.1006/jdeq.1996.0157.
      J. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Lecture Notes in Appl. Math. Sci. , 18 Springer-Verlag, Berlin and New York, 1976.
      T. Nagai , T. Senba  and  K. Yoshida , Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997) , 411-433. 
      K. Painter  and  T. Hillen , Spatio-temporal chaos in a chemotaxis model, Phys. D, 240 (2011) , 363-375.  doi: 10.1016/j.physd.2010.09.011.
      C. S. Patlak , Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953) , 311-338.  doi: 10.1007/BF02476407.
      D. H. Sather , Bifurcation of periodic solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 41 (1971) , 68-80.  doi: 10.1007/BF00250178.
      D. H. Sattinger , Bifurcation and symmetry breaking in applied mathematics, Bull. Amer. Math. Soc., 3 (1980) , 779-819.  doi: 10.1090/S0273-0979-1980-14823-5.
      G. Simonett , Center manifolds for quasilinear reaction-diffusion systems, Differential Integral Equations, 8 (1995) , 753-796. 
      C. Stinner , J. I. Tello  and  M. Winkler , Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014) , 1607-1626.  doi: 10.1007/s00285-013-0681-7.
      J. I. Tello  and  M. Winkler , Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012) , 1413-1425.  doi: 10.1088/0951-7715/25/5/1413.
      Z. A. Wang , Mathematics of traveling waves in chemotaxis-review paper, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013) , 601-641.  doi: 10.3934/dcdsb.2013.18.601.
      Q. Wang , C. Gai  and  J. Yan , Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015) , 1239-1284.  doi: 10.3934/dcds.2015.35.1239.
      Q. Wang , L. Zhang , J. Yang  and  J. Hu , Global existence and steady states of a two competing species Keller-Segel chemotaxis model, Kinet. Relat. Models, 8 (2015) , 777-807.  doi: 10.3934/krm.2015.8.777.
      M. Winkler , Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010) , 2889-2905.  doi: 10.1016/j.jde.2010.02.008.
      Q. Zhang  and  Y. Li , Global existence and asymptotic properties of the solution to a two-species chemotaxis system, J. Math. Anal. Appl., 418 (2014) , 47-63.  doi: 10.1016/j.jmaa.2014.03.084.
  • 加载中

Figures(6)

SHARE

Article Metrics

HTML views(576) PDF downloads(219) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return