This paper investigates the formation of time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model with a focus on the effect of cellular growth. We carry out rigorous Hopf bifurcation analysis to obtain the bifurcation values, spatial profiles and time period associated with these oscillating patterns. Moreover, the stability of the periodic solutions is investigated and it provides a selection mechanism of stable time-periodic mode which suggests that only large domains support the formation of these periodic patterns. Another main result of this paper reveals that cellular growth is responsible for the emergence and stabilization of the oscillating patterns observed in the 3×3 system, while the system admits a Lyapunov functional in the absence of cellular growth. Global existence and boundedness of the system in 2D are proved thanks to this Lyapunov functional. Finally, we provide some numerical simulations to illustrate and support our theoretical findings.
Citation: |
Figure 1. Bifurcation diagrams of $\rho_k(s)$ around $(\bar u,\bar v,\bar w)$. The stable bifurcation curve is plotted in solid lines and the unstable bifurcation curve is plotted in imaginary line. The branch $\rho_{k}(s)$ around $(\bar u,\bar v,\bar w,\chi_{k})$ is always unstable if $k\neq k_0$, while the turning direction of $\rho_{k_0}(s)$ determines its stability
Figure 2. Initiation and development of time-periodic spatial patterns to (1.1) over $(0,6)$ with initial data being small perturbations of $(\bar u,\bar v,\bar w)$. System parameters are chosen to be $d_1=5$, $d_2=0.1$, $\mu_1=\mu_2=1$, $\lambda=5$, $\xi=0.1$ and $\chi=80$. Our theoretical results indicate that the homogeneous equilibrium loses its stability at $\chi_0=\chi^H_{2}\approx 63.2$ through Hopf bifurcation to a stable time-periodic pattern which has spatial profile $\cos \frac{\pi x}{3}$ and period $T\approx 8$. Space and time grid sizes are $\Delta x=0.02$ and $\Delta t=0.05$. The numerical simulations are in good agreement with our theoretical findings
Figure 4. Effect of cellular growth on the pattern formation of $u$-species, where we choose $\mu_1=\mu_2$. System parameters are chosen to be $d_1=8$, $d_2=0.5$, $\chi=130$ and $\xi=0.4$. Initial data are taken to be small perturbations of $(\bar u,\bar v,\bar w)$. Space and time grid sizes are $\Delta x=L/500=0.012$ and $\Delta t=0.05$. We observe that the cellular growth rate $\mu$ supports the formation of periodic patterns. However, the periodic pattern disappears at $\mu\approx 2.1$, for which we surmise that the oscillating solutions become unstable and develop into a stable stationary pattern
Figure 5. Effect of domain size on the pattern formation of $u$-species. We choose the system parameters to be the same as those in Figure 3 except that $\chi$ is slightly larger than $\chi_{k_0}$. $\Delta x=L/500$ and $\Delta t=0.05$ in each graph. Our simulations support our theoretical findings that large domains support periodic patterns with higher modes, however when the domain size is small, therefore does not exist time-periodic solutions that bifurcate from the homogeneous solution
N. D. Alikakos
, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979)
, 827-868.
doi: 10.1080/03605307908820113.![]() ![]() ![]() |
|
H. Amann
, Hopf bifurcation in quasilinear reaction-diffusion systems, Delay Differential Equations and Dynamical Systems, Lecture Notes in Mathematics, 1475 (1991)
, 53-63.
doi: 10.1007/BFb0083479.![]() ![]() ![]() |
|
H. Amann
, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differential Integral Equations, 3 (1990)
, 13-75.
![]() ![]() |
|
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, differential operators and nonlinear analysis, Teubner, Stuttgart, Leipzig, 133 (1993), 9-126
doi: 10.1007/978-3-663-11336-2_1.![]() ![]() ![]() |
|
R. Bellman, Stability Theory of Differential Equations, McGraw-Hill Book Company, Inc. , New York-Toronto-London, 1953. xiii+166 pp.
![]() ![]() |
|
N. Bellomo
, A. Bellouquid
, Y. Tao
and M. Winkler
, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015)
, 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
|
P. Biler
, I. Espejo
and E. Guerra
, Blow-up in higher dimensional two species chemotactic systems, Commun. Pure Appl. Anal., 12 (2013)
, 89-98.
doi: 10.3934/cpaa.2013.12.89.![]() ![]() ![]() |
|
P. Biler
and T. Nadzieja
, Existence and nonexistence of solutions for a model of gravitational interaction of particles. Ⅰ., Colloq. Math., 66 (1994)
, 319-334.
![]() ![]() |
|
S. Y. A. Chang
and P. Yang
, Conformal deformation of metric on $S^2$, J. Differential Geom., 27 (1988)
, 259-296.
doi: 10.4310/jdg/1214441783.![]() ![]() ![]() |
|
A. Chertock
, A. Kurganov
, X. Wang
and Y. Wu
, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012)
, 51-95.
doi: 10.3934/krm.2012.5.51.![]() ![]() ![]() |
|
S. N. Chow
and J. Mallet-Paret
, Integral averaging and bifurcation, J. Differential Equations, 26 (1977)
, 112-159.
doi: 10.1016/0022-0396(77)90101-2.![]() ![]() ![]() |
|
C. Conca
, E. Espejo
and K. Vilches
, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\mathbb{R}^2$, European J. Appl. Math., 22 (2011)
, 553-580.
doi: 10.1017/S0956792511000258.![]() ![]() ![]() |
|
M. G. Crandall
and P. H. Rabinowitz
, The Hopf bifurcation theorem in infinite dimensions, Arch. Rational Mech. Anal., 67 (1977)
, 53-72.
doi: 10.1007/BF00280827.![]() ![]() ![]() |
|
E. N. Dancer
, On stability and Hopf bifurcations for chemotaxis systems, Methods Appl. Anal., 8 (2001)
, 245-256.
doi: 10.4310/MAA.2001.v8.n2.a3.![]() ![]() ![]() |
|
S. I. Ei
, H. Izuhara
and M. Mimura
, Spatio-temporal oscillations in the Keller-Segel system with logistic growth, Phys. D, 277 (2014)
, 1-21.
doi: 10.1016/j.physd.2014.03.002.![]() ![]() ![]() |
|
E. Espejo
, K. Vilches
and C. Conca
, Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in $\mathbb {R}^2$, European J. Appl. Math., 24 (2013)
, 297-313.
doi: 10.1017/S0956792512000411.![]() ![]() ![]() |
|
G. Gerisch
, Chemotaxis in dictyostelium, Annu. Rev. Physiol., 44 (1982)
, 535-552.
doi: 10.1146/annurev.ph.44.030182.002535.![]() ![]() |
|
P. Haastert
and P. Devreotes
, Chemotaxis: Signalling the way forward, Nat. Rev. Mol. Cell Biol., 5 (2004)
, 626-634.
doi: 10.1038/nrm1435.![]() ![]() |
|
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan,
Theory and Applications of Hopf Bifurcation, London Mathematical Society Lecture Note Series, 41. Cambridge University Press, Cambridge-New York, 1981. v+311 pp. (microfiche insert).
![]() ![]() |
|
D. Henry,
Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 1981.
doi: 10.1007/BFb0089647.![]() ![]() ![]() |
|
K. Hepp
and E. H. Lieb
, Phase transition in reservoir driven open systems with applications to lasers and superconductors, Condensed Matter Physics and Exactly Soluble Models, (2004)
, 145--175.
doi: 10.1007/978-3-662-06390-3_13.![]() ![]() |
|
T. Hillen
and K. J. Painter
, A user's guidence to PDE models for chemotaxis, J. Math. Biol., 58 (2009)
, 183-217.
doi: 10.1007/s00285-008-0201-3.![]() ![]() ![]() |
|
D. Horstmann
, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅰ., Jahresber DMV, 105 (2003)
, 103-165.
![]() ![]() |
|
D. Horstmann
, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ., Jahresber DMV, 106 (2004)
, 51-69.
![]() ![]() |
|
D. Horstmann
, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011)
, 231-270.
doi: 10.1007/s00332-010-9082-x.![]() ![]() ![]() |
|
G. Iooss
, Existence et stabilité de la solution périodique secondaire intervenant dans les problémes d'evolution du type Navier-Stokes, Arch. Rational Mech. Anal., 47 (1972)
, 301-329.
doi: 10.1007/BF00281637.![]() ![]() ![]() |
|
V. Iudovic
, Stability of steady flows of viscous incompressible fluids, Soviet Physics Dokl., 10 (1965)
, 293-295.
![]() |
|
V. Iudovic
, On the stability of self-oscillations of a liquid, Soviet Physics Dokl., 11 (1970)
, 1543-1546.
![]() |
|
V. Iudovic
, Appearance of auto-oscillations in a fluid, Prikl. Mat. Meh., 35 (1971)
, 638-655.
doi: 10.1016/0021-8928(71)90053-0.![]() ![]() ![]() |
|
D. D. Joseph,
Stability of Fluid Motions. I. , Springer Tracts in Natural Philosophy, Vol. 27. Springer-Verlag, Berlin-New York, 1976. xiii+282 pp.
doi: 10.1007/978-3-642-80991-0.![]() ![]() ![]() |
|
D. D. Joseph
and D. Nield
, Stability of bifurcating time-periodic and steady solutions of arbitrary amplitude, Arch. Rational Mech. Anal., 58 (1975)
, 369-380.
doi: 10.1007/BF00250296.![]() ![]() ![]() |
|
D. D. Joseph
and D. H. Sattinger
, Bifurcating time periodic solutions and their stability, Arch. Rational Mech. Anal., 45 (1972)
, 79-109.
doi: 10.1007/BF00253039.![]() ![]() ![]() |
|
T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995. xxii+619 pp. ISBN: 3-540-58661-X
doi: 10.1007/978-3-642-66282-9.![]() ![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Inition of slime mold aggregation view as an instability, J. Theoret. Biol., 26 (1970)
, 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Model for chemotaxis, J. Theoret. Biol., 30 (1971)
, 225-234.
doi: 10.1016/0022-5193(71)90050-6.![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Traveling bands of chemotactic bacteria: A Theretical Analysis, J. Theoret. Biol., 30 (1971)
, 235-248.
doi: 10.1016/0022-5193(71)90051-8.![]() ![]() |
|
K. Kishimoto
and H. Weinberger
, The spatial homogeneity of stable equilibria of some reaction-diffusion systems in convex domains, J. Differential Equations, 58 (1985)
, 15-21.
doi: 10.1016/0022-0396(85)90020-8.![]() ![]() ![]() |
|
O. A. Lady${\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}}
\over z} }$enskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type,
American Mathematical Society, (1967), 736pp.
![]() ![]() |
|
P. Liu
, J. Shi
and Z. A. Wang
, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013)
, 2597-2625.
doi: 10.3934/dcdsb.2013.18.2597.![]() ![]() ![]() |
|
Y. Lou
and W.-M. Ni
, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996)
, 79-131.
doi: 10.1006/jdeq.1996.0157.![]() ![]() ![]() |
|
J. Marsden and M. McCracken,
The Hopf Bifurcation and Its Applications, Lecture Notes in Appl. Math. Sci. , 18 Springer-Verlag, Berlin and New York, 1976.
![]() ![]() |
|
T. Nagai
, T. Senba
and K. Yoshida
, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997)
, 411-433.
![]() ![]() |
|
K. Painter
and T. Hillen
, Spatio-temporal chaos in a chemotaxis model, Phys. D, 240 (2011)
, 363-375.
doi: 10.1016/j.physd.2010.09.011.![]() ![]() |
|
C. S. Patlak
, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953)
, 311-338.
doi: 10.1007/BF02476407.![]() ![]() ![]() |
|
D. H. Sather
, Bifurcation of periodic solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 41 (1971)
, 68-80.
doi: 10.1007/BF00250178.![]() ![]() ![]() |
|
D. H. Sattinger
, Bifurcation and symmetry breaking in applied mathematics, Bull. Amer. Math. Soc., 3 (1980)
, 779-819.
doi: 10.1090/S0273-0979-1980-14823-5.![]() ![]() ![]() |
|
G. Simonett
, Center manifolds for quasilinear reaction-diffusion systems, Differential Integral Equations, 8 (1995)
, 753-796.
![]() ![]() |
|
C. Stinner
, J. I. Tello
and M. Winkler
, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014)
, 1607-1626.
doi: 10.1007/s00285-013-0681-7.![]() ![]() ![]() |
|
J. I. Tello
and M. Winkler
, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012)
, 1413-1425.
doi: 10.1088/0951-7715/25/5/1413.![]() ![]() ![]() |
|
Z. A. Wang
, Mathematics of traveling waves in chemotaxis-review paper, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013)
, 601-641.
doi: 10.3934/dcdsb.2013.18.601.![]() ![]() ![]() |
|
Q. Wang
, C. Gai
and J. Yan
, Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015)
, 1239-1284.
doi: 10.3934/dcds.2015.35.1239.![]() ![]() ![]() |
|
Q. Wang
, L. Zhang
, J. Yang
and J. Hu
, Global existence and steady states of a two competing species Keller-Segel chemotaxis model, Kinet. Relat. Models, 8 (2015)
, 777-807.
doi: 10.3934/krm.2015.8.777.![]() ![]() ![]() |
|
M. Winkler
, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010)
, 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
|
Q. Zhang
and Y. Li
, Global existence and asymptotic properties of the solution to a two-species chemotaxis system, J. Math. Anal. Appl., 418 (2014)
, 47-63.
doi: 10.1016/j.jmaa.2014.03.084.![]() ![]() ![]() |
Bifurcation diagrams of
Initiation and development of time-periodic spatial patterns to (1.1) over
In each subfigure, we plot in the 3D
Effect of cellular growth on the pattern formation of
Effect of domain size on the pattern formation of
Pattern formation of