
-
Previous Article
Generalized Lyapunov-Razumikhin method for retarded differential inclusions: Applications to discontinuous neural networks
- DCDS-B Home
- This Issue
-
Next Article
Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth
Expansivity implies existence of Hölder continuous Lyapunov function
Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland |
The Lyapunov function is a very useful tool in the theory of dynamical systems, in particular in the study of the stability of an equilibrium point. In this paper we construct a locally Hölder continuous Lyapunov function for a uniformly expansive set for a map f in a metric space X. In the construction a basic role is played by the functions defining the stable and unstable cone-fields. As a tool we also use the approximately quasiconvex functions.
References:
[1] |
E. ~Akin,
The General Topology of Dynamical Systems, volume 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. |
[2] |
D. Angeli,
A Lyapunov approach to the incremental stability properties, IEEE Trans. Automat. Control, 47 (2002), 410-421.
doi: 10.1109/9.989067. |
[3] |
J. P. Aubin,
Mutational equations in metric spaces, Set-Valued Analysis, 1 (1993), 3-46.
doi: 10.1007/BF01039289. |
[4] |
F. Forni and R. Sepulchre,
A differential lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.
doi: 10.1109/TAC.2013.2285771. |
[5] |
P. Giesl and S. Hafstein,
Review on computational methods for Lyapunov functions, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291. |
[6] |
J. Harjani and K. Sadarangani,
Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Analysis: Theory, Methods & Applications, 72 (2010), 1188-1197.
doi: 10.1016/j.na.2009.08.003. |
[7] |
T. Kaczynski, K. Mischaikow and M. Mrozek,
Computational Homology, volume 157, Springer-Verlag, New York, 2004.
doi: 10.1007/b97315. |
[8] |
A. Katok and B. Hasselblatt,
Introduction to the Modern Theory of Dynamical Systems, volume~54. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187. |
[9] |
V. Lakshmikantham, T. G. Bhaskar and J. V. Devi,
Theory of Set Differential Equations in Metric Spaces, volume~2, Cambridge Scientific Publishers Cambridge, 2006. |
[10] |
J. Lewowicz,
Lyapunov functions and topological stability, Journal of Differential Equations, 38 (1980), 192-209.
doi: 10.1016/0022-0396(80)90004-2. |
[11] |
J. Lewowicz,
Persistence of semi-trajectories, Journal of Dynamics and Differential Equations, 18 (2006), 1095-1102.
doi: 10.1007/s10884-006-9047-9. |
[12] |
W. Lohmiller and J.-J. E. Slotine,
On contraction analysis for non-linear systems, Automatica J. IFAC, 34 (1998), 683-686.
doi: 10.1016/S0005-1098(98)00019-3. |
[13] |
A. M. Lyapunov,
The general problem of the stability of motion, International Journal of Control, 55 (1992), 521-790.
doi: 10.1080/00207179208934253. |
[14] |
M. Malisoff and F. Mazenc,
Constructions of Strict Lyapunov Functions, Springer Science & Business Media, 2009.
doi: 10.1007/978-1-84882-535-2. |
[15] |
M. Mazur,
On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces, Annales Polonici Mathematici, 109 (2013), 29-38.
doi: 10.4064/ap109-1-2. |
[16] |
M. Mazur and Ja. Tabor,
Computational hyperbolicity, Discrete and Continuous Dynamical Systems (DCDS-A), 29 (2011), 1175-1189.
doi: 10.3934/dcds.2011.29.1175. |
[17] |
C. C. McCluskey,
Using Lyapunov functions to construct Lyapunov functionals for delay differential equations, SIAM Journal on Applied Dynamical Systems, 14 (2015), 1-24.
doi: 10.1137/140971683. |
[18] |
M. Mrozek, Topological dynamics: Rigorous numerics ia cubical homology, In Advances in Applied and Computational Topology: Proc. Symp. Amer. Math. Soc, volume 70, pages 41-73. American Mathematical Society, Providence, RI, 2012.
doi: 10.1090/psapm/070/588. |
[19] |
S. Newhouse,
Cone-fields, domination, and hyperbolicity, Modern dynamical systems and applications, (2004), 419-432.
|
[20] |
Ł. Struski and Ja. Tabor,
Expansivity and cone-fields in metric spaces, Journal of Dynamics and Differential Equations, 26 (2014), 517-527.
doi: 10.1007/s10884-014-9373-2. |
[21] |
Ł. Struski, Ja. Tabor and T. Kulaga,
Cone-fields without constant orbit core dimension, Discrete and Continuous Dynamical Systems, 32 (2012), 3651-3664.
doi: 10.3934/dcds.2012.32.3651. |
[22] |
Ja. Tabor,
Differential equations in metric spaces, Proceedings of Equadiff 10, 127 (2002), 353-360.
|
[23] |
Ja. Tabor, Jó. Tabor and M. Żoldak,
On ω-strongly quasiconvex and ω-strongly quasiconcave sequences, Aequationes mathematicae, 82 (2011), 255-268.
doi: 10.1007/s00010-011-0094-x. |
[24] |
J. Tolosa,
The method of Lyapunov functions of two variables, Contemporary Mathematics, 440 (2007), 243-271.
doi: 10.1090/conm/440/08489. |
[25] |
D. Wilczak and P. Zgliczyński,
Computer assisted proof of the existence of homoclinic tangency for the Hénon map and for the forced damped pendulum, SIAM Journal on Applied Dynamical Systems, 8 (2009), 1632-1663.
doi: 10.1137/090759975. |
show all references
References:
[1] |
E. ~Akin,
The General Topology of Dynamical Systems, volume 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. |
[2] |
D. Angeli,
A Lyapunov approach to the incremental stability properties, IEEE Trans. Automat. Control, 47 (2002), 410-421.
doi: 10.1109/9.989067. |
[3] |
J. P. Aubin,
Mutational equations in metric spaces, Set-Valued Analysis, 1 (1993), 3-46.
doi: 10.1007/BF01039289. |
[4] |
F. Forni and R. Sepulchre,
A differential lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.
doi: 10.1109/TAC.2013.2285771. |
[5] |
P. Giesl and S. Hafstein,
Review on computational methods for Lyapunov functions, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291. |
[6] |
J. Harjani and K. Sadarangani,
Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Analysis: Theory, Methods & Applications, 72 (2010), 1188-1197.
doi: 10.1016/j.na.2009.08.003. |
[7] |
T. Kaczynski, K. Mischaikow and M. Mrozek,
Computational Homology, volume 157, Springer-Verlag, New York, 2004.
doi: 10.1007/b97315. |
[8] |
A. Katok and B. Hasselblatt,
Introduction to the Modern Theory of Dynamical Systems, volume~54. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187. |
[9] |
V. Lakshmikantham, T. G. Bhaskar and J. V. Devi,
Theory of Set Differential Equations in Metric Spaces, volume~2, Cambridge Scientific Publishers Cambridge, 2006. |
[10] |
J. Lewowicz,
Lyapunov functions and topological stability, Journal of Differential Equations, 38 (1980), 192-209.
doi: 10.1016/0022-0396(80)90004-2. |
[11] |
J. Lewowicz,
Persistence of semi-trajectories, Journal of Dynamics and Differential Equations, 18 (2006), 1095-1102.
doi: 10.1007/s10884-006-9047-9. |
[12] |
W. Lohmiller and J.-J. E. Slotine,
On contraction analysis for non-linear systems, Automatica J. IFAC, 34 (1998), 683-686.
doi: 10.1016/S0005-1098(98)00019-3. |
[13] |
A. M. Lyapunov,
The general problem of the stability of motion, International Journal of Control, 55 (1992), 521-790.
doi: 10.1080/00207179208934253. |
[14] |
M. Malisoff and F. Mazenc,
Constructions of Strict Lyapunov Functions, Springer Science & Business Media, 2009.
doi: 10.1007/978-1-84882-535-2. |
[15] |
M. Mazur,
On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces, Annales Polonici Mathematici, 109 (2013), 29-38.
doi: 10.4064/ap109-1-2. |
[16] |
M. Mazur and Ja. Tabor,
Computational hyperbolicity, Discrete and Continuous Dynamical Systems (DCDS-A), 29 (2011), 1175-1189.
doi: 10.3934/dcds.2011.29.1175. |
[17] |
C. C. McCluskey,
Using Lyapunov functions to construct Lyapunov functionals for delay differential equations, SIAM Journal on Applied Dynamical Systems, 14 (2015), 1-24.
doi: 10.1137/140971683. |
[18] |
M. Mrozek, Topological dynamics: Rigorous numerics ia cubical homology, In Advances in Applied and Computational Topology: Proc. Symp. Amer. Math. Soc, volume 70, pages 41-73. American Mathematical Society, Providence, RI, 2012.
doi: 10.1090/psapm/070/588. |
[19] |
S. Newhouse,
Cone-fields, domination, and hyperbolicity, Modern dynamical systems and applications, (2004), 419-432.
|
[20] |
Ł. Struski and Ja. Tabor,
Expansivity and cone-fields in metric spaces, Journal of Dynamics and Differential Equations, 26 (2014), 517-527.
doi: 10.1007/s10884-014-9373-2. |
[21] |
Ł. Struski, Ja. Tabor and T. Kulaga,
Cone-fields without constant orbit core dimension, Discrete and Continuous Dynamical Systems, 32 (2012), 3651-3664.
doi: 10.3934/dcds.2012.32.3651. |
[22] |
Ja. Tabor,
Differential equations in metric spaces, Proceedings of Equadiff 10, 127 (2002), 353-360.
|
[23] |
Ja. Tabor, Jó. Tabor and M. Żoldak,
On ω-strongly quasiconvex and ω-strongly quasiconcave sequences, Aequationes mathematicae, 82 (2011), 255-268.
doi: 10.1007/s00010-011-0094-x. |
[24] |
J. Tolosa,
The method of Lyapunov functions of two variables, Contemporary Mathematics, 440 (2007), 243-271.
doi: 10.1090/conm/440/08489. |
[25] |
D. Wilczak and P. Zgliczyński,
Computer assisted proof of the existence of homoclinic tangency for the Hénon map and for the forced damped pendulum, SIAM Journal on Applied Dynamical Systems, 8 (2009), 1632-1663.
doi: 10.1137/090759975. |


[1] |
Łukasz Struski, Jacek Tabor, Tomasz Kułaga. Cone-fields without constant orbit core dimension. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3651-3664. doi: 10.3934/dcds.2012.32.3651 |
[2] |
Boris Muha. A note on the Trace Theorem for domains which are locally subgraph of a Hölder continuous function. Networks and Heterogeneous Media, 2014, 9 (1) : 191-196. doi: 10.3934/nhm.2014.9.191 |
[3] |
Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197 |
[4] |
Andrey Kochergin. A Besicovitch cylindrical transformation with Hölder function. Electronic Research Announcements, 2015, 22: 87-91. doi: 10.3934/era.2015.22.87 |
[5] |
Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983 |
[6] |
Alfonso Artigue. Discrete and continuous topological dynamics: Fields of cross sections and expansive flows. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5911-5927. doi: 10.3934/dcds.2016059 |
[7] |
Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure and Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018 |
[8] |
Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79 |
[9] |
Jinpeng An. Hölder stability of diffeomorphisms. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315 |
[10] |
Jordi-Lluís Figueras, Thomas Ohlson Timoudas. Sharp $ \frac12 $-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4519-4531. doi: 10.3934/dcds.2020189 |
[11] |
Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225 |
[12] |
Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control and Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015 |
[13] |
Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations and Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391 |
[14] |
Yong Chen, Hongjun Gao, María J. Garrido–Atienza, Björn Schmalfuss. Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than $1/2$ and random dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 79-98. doi: 10.3934/dcds.2014.34.79 |
[15] |
Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012 |
[16] |
Luis Barreira, Claudia Valls. Hölder Grobman-Hartman linearization. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 187-197. doi: 10.3934/dcds.2007.18.187 |
[17] |
Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157 |
[18] |
Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169 |
[19] |
Vincent Lynch. Decay of correlations for non-Hölder observables. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 19-46. doi: 10.3934/dcds.2006.16.19 |
[20] |
Slobodan N. Simić. Hölder forms and integrability of invariant distributions. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 669-685. doi: 10.3934/dcds.2009.25.669 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]