In this paper, a general class of nonlinear dynamical systems described by retarded differential equations with discontinuous right-hand sides is considered. Under the extended Filippov-framework, we investigate some basic stability problems for retarded differential inclusions (RDI) with given initial conditions by using the generalized Lyapunov-Razumikhin method. Comparing with the previous work, the main results given in this paper show that the Lyapunov-Razumikhin function is allowed to have a indefinite or positive definite derivative for almost everywhere along the solution trajectories of RDI. However, in most of the existing literature, the derivative (if it exists) of Lyapunov-Razumikhin function is required to be negative or semi-negative definite for almost everywhere. In addition, the Lyapunov-Razumikhin function in this paper is allowed to be non-smooth. To deal with the stability, we also drop the specific condition that the Lyapunov-Razumikhin function should have an infinitesimal upper limit. Finally, we apply the proposed Razumikhin techniques to handle the stability or stabilization control of discontinuous time-delayed neural networks. Meanwhile, we present two examples to demonstrate the effectiveness of the developed method.
Citation: |
J. P. Aubin and H. Frankowska,
Set-Valued Analysis, MA: Birkhauser, Boston, 1990.
![]() ![]() |
|
J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4.![]() ![]() ![]() |
|
A. Baciotti
and F. Ceragioli
, Stability and stabilization of discontinuous systems and non-smooth Lyapunov function, ESAIM Control Optim. Calc. Var., 4 (1999)
, 361-376.
doi: 10.1051/cocv:1999113.![]() ![]() ![]() |
|
M. Benchohra
and S. K. Ntouyas
, Existence results for functional differential inclusions, Electronic Journal of Differential Equations, 2001 (2001)
, 1-8.
![]() ![]() |
|
M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk,
Piecewise-smooth Dynamical Systems, Theory and Applications, Springer-Verlag, London, 2008.
![]() ![]() |
|
V. I. Blagodat-skik
and A. F. Filippov
, Differential inclusions and optimal control, Proc. Steklov Inst. Math., 4 (1986)
, 199-259.
![]() |
|
Z. W. Cai
and L. H. Huang
, Finite-time stabilization of delayed memristive neural networks: Discontinuous state-feedback and adaptive control approach, IEEE Trans. Neural Netw. Learn. Syst., PP (2017)
, 1-13.
doi: 10.1109/TNNLS.2017.2651023.![]() ![]() |
|
Z. W. Cai
and L. H. Huang
, Novel adaptive control and state-feedback control strategies to finite-time stabilization of discontinuous delayed networks, IEEE Trans. Syst., Man, Cybern., Syst., PP (2017)
, 1-11.
doi: 10.1109/TSMC.2017.2657784.![]() ![]() |
|
Z. W. Cai
, L. H. Huang
, Z. Y. Guo
and X. Y. Chen
, On the periodic dynamics of a class of time-varying delayed neural networks via differential inclusions, Neural Networks, 33 (2012)
, 97-113.
doi: 10.1016/j.neunet.2012.04.009.![]() ![]() |
|
E. K. P. Chong
, S. Hui
and S. H. Zak
, An analysis of a class of neural networks for solving linear programming problems, IEEE Trans. Autom. Control, 44 (1999)
, 1995-2006.
doi: 10.1109/9.802909.![]() ![]() ![]() |
|
F. H. Clarke,
Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
![]() ![]() |
|
F. H. Clarke, Y. Ledyaev, R. J. Stern and P. R. Wolenski,
Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998.
![]() ![]() |
|
J. Cortés
, Discontinuous dynamical systems, IEEE Control Syst. Mag., 28 (2008)
, 36-73.
doi: 10.1109/MCS.2008.919306.![]() ![]() ![]() |
|
A. F. Filippov,
Differential Equations with Discontinuous Right-hand Side, in: Mathematics and Its Applications (Soviet Series), Kluwer Academic, Boston, 1988.
doi: 10.1007/978-94-015-7793-9.![]() ![]() ![]() |
|
M. Forti
, M. Grazzini
, P. Nistri
and L. Pancioni
, Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations, Physica D, 214 (2006)
, 88-99.
doi: 10.1016/j.physd.2005.12.006.![]() ![]() ![]() |
|
M. Forti
, P. Nistri
and M. Quincampoix
, Generalized neural network for nonsmooth nonlinear programming problems, IEEE Trans. Circuits Syst. I, 51 (2004)
, 1741-1754.
doi: 10.1109/TCSI.2004.834493.![]() ![]() ![]() |
|
Z. Y. Guo
and L. H. Huang
, Generalized Lyapunov method for discontinuous systems, Nonlinear Anal., 71 (2009)
, 3083-3092.
doi: 10.1016/j.na.2009.01.220.![]() ![]() ![]() |
|
Z. Y. Guo
, J. Wang
and Z. Yan
, Attractivity analysis of memristor-based cellular neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014)
, 704-717.
doi: 10.1109/TNNLS.2013.2280556.![]() ![]() |
|
G. Haddad
, Topological properties of the sets of solutions for functional differential inclusions, Nonlinear Anal., 5 (1981)
, 1349-1366.
doi: 10.1016/0362-546X(81)90111-5.![]() ![]() ![]() |
|
G. Haddad
, Monotone viable trajectories for functional differential inclusions, J. Differential Equations, 42 (1981)
, 1-24.
doi: 10.1016/0022-0396(81)90031-0.![]() ![]() ![]() |
|
J. K. Hale,
Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
![]() ![]() |
|
H. Hermes, Discontinuous vector fields and feedback control, in: Differential Equations and Dynamical Systems, Academic, New York, (1967), 155-165.
![]() ![]() |
|
S. H. Hong
, Existence results for functional differential inclusions with infinite delay, Acta Math. Sin., 22 (2006)
, 773-780.
doi: 10.1007/s10114-005-0600-y.![]() ![]() ![]() |
|
L. H. Huang, Z. Y. Guo and J. F. Wang, Theory and Applications of Differential Equations with Discontinuous Right-hand Sides (in Chinese), Science Press, Beijing, 2011.
![]() |
|
M. P. Kennedy
and L. O. Chua
, Neural networks for nonlinear programming, IEEE Trans. Circuits Syst. I, 35 (1988)
, 554-562.
doi: 10.1109/31.1783.![]() ![]() ![]() |
|
N. N. Krasovskii,
Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, CA: Stanford Univ. Press, Stanford, 1963. (Transl. from Russian by J. L. Brenner).
![]() ![]() |
|
K. Z. Liu
, X. M. Sun
, J. Liu
and A. R. Teel
, Stability theorems for delay differential inclusions, IEEE Trans. Autom. Control, 61 (2016)
, 3215-3220.
doi: 10.1109/TAC.2015.2507782.![]() ![]() ![]() |
|
K. Z. Liu
and X. M. Sun
, Razumikhin-type theorems for hybrid system with memory, Automatica, 71 (2016)
, 72-77.
doi: 10.1016/j.automatica.2016.04.038.![]() ![]() ![]() |
|
X. Y. Liu
, J. D. Cao
, W. W. Yu
and Q. Song
, Nonsmooth finite-time synchronization of switched coupled neural networks, IEEE Trans. Cybern., 46 (2016)
, 2360-2371.
doi: 10.1109/TCYB.2015.2477366.![]() ![]() |
|
A. C. J. Luo,
Discontinuous Dynamical Systems on Time-varying Domains, Higher Education Press, Beijing, 2009.
doi: 10.1007/978-3-642-00253-3.![]() ![]() ![]() |
|
V. Lupulescu
, Existence of solutions for nonconvex functional differential inclusions, Electronic Journal of Differential Equations, 2004 (2004)
, 1-6.
![]() ![]() |
|
B. E. Paden
and S. S. Sastry
, A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator, IEEE Trans. Circuits Syst., 34 (1987)
, 73-82.
doi: 10.1109/TCS.1987.1086038.![]() ![]() ![]() |
|
T. T. Su
and X. S. Yang
, Finite-time synchronization of competitive neural networks with mixed delays, Discrete & Continuous Dynamical Systems-Series B, 21 (2016)
, 3655-3667.
doi: 10.3934/dcdsb.2016115.![]() ![]() ![]() |
|
A. Surkov
, On the stability of functional-differential inclusions with the use of invariantly differentiable Lyapunov functionals, Differential Equations, 43 (2007)
, 1079-1087.
doi: 10.1134/S001226610708006X.![]() ![]() ![]() |
|
V. I. Utkin
, Variable structure systems with sliding modes, IEEE Trans. Automat. Contr., 22 (1977)
, 212-222.
![]() ![]() |
|
K. N. Wang
and A. N. Michel
, Stability analysis of differential inclusions in banach space with application to nonlinear systems with time delays, IEEE Trans. Circuits Syst. I, 43 (1996)
, 617-626.
doi: 10.1109/81.526677.![]() ![]() ![]() |
|
L. Wang
and Y. Shen
, Finite-time stabilizability and instabilizability of delayed memristive neural networks with nonlinear discontinuous controller, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015)
, 2914-2924.
doi: 10.1109/TNNLS.2015.2460239.![]() ![]() ![]() |
|
S. P. Wen
, T. W. Huang
, Z. G. Zeng
, Y. R. Chen
and P. Li
, Circuit design and exponential stabilization of memristive neural networks, Neural Networks, 63 (2015)
, 48-56.
doi: 10.1016/j.neunet.2014.10.011.![]() ![]() |
|
A. L. Wu
, S. P. Wen
and Z. G. Zeng
, Synchronization control of a class of memristor-based recurrent neural networks, Information Sciences, 183 (2012)
, 106-116.
doi: 10.1016/j.ins.2011.07.044.![]() ![]() ![]() |
|
C. J. Xu
, P. L. Li
and Y. C. Pang
, Exponential stability of almost periodic solutions for memristor-based neural networks with distributed leakage delays, Neural Comput., 28 (2016)
, 2726-2756.
doi: 10.1162/NECO_a_00895.![]() ![]() |
|
X. S. Yang
, D. W. C. Ho
, J. Q. Lu
and Q. Song
, Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays, IEEE Trans. Fuzzy Syst., 23 (2015)
, 2302-2316.
doi: 10.1109/TFUZZ.2015.2417973.![]() ![]() |
|
X. S. Yang
and D. W. C. Ho
, Synchronization of delayed memristive neural networks: Robust analysis approach, IEEE Trans. Cybern., 46 (2016)
, 3377-3387.
doi: 10.1109/TCYB.2015.2505903.![]() ![]() |
|
B. Zhou
and A. V. Egorov
, Razumikhin and Krasovskii stability theorems for time-varying time-delay systems, Automatica, 71 (2016)
, 281-291.
doi: 10.1016/j.automatica.2016.04.048.![]() ![]() ![]() |
Discontinuous neuron activation functions of Example 1
Time-domain behaviors of the state variables
Discontinuous neuron activation functions of Example 2
Time-domain behaviors of the state variables