[1]
|
A. Alshorman, C. Samarasinghe, W. Lu and L. Rong, An HIV model with age-structured latently infected cells, J. Biol. Dyna., 11 (2017), 192-215.
doi: 10.1080/17513758.2016.1198835.
|
[2]
|
J. N. Blankson, D. Persaud and R. F. Siliciano, The challenge of viral reservoirs in HIV-1 infection, Annu. Rev. Med., 53 (2002), 557-593.
doi: 10.1146/annurev.med.53.082901.104024.
|
[3]
|
C. J. Browne, A multi-strain virus model with infected cell age structure: Application to HIV, Nonlinear Anal.: Real World Appl., 22 (2015), 354-372.
doi: 10.1016/j.nonrwa.2014.10.004.
|
[4]
|
N. Chomont, M. El-Far, P. Ancuta and L. Trautmann, HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nat. Med., 15 (2009), 893-900.
doi: 10.1038/nm.1972.
|
[5]
|
J. Cushing,
An Introduction to Structured Population Dynamics, SIAM, Philadelphia, 1998.
doi: 10.1137/1.9781611970005.
|
[6]
|
Z. Feng and L. Rong, The influence of anti-viral drug therapy on the evolution of HIV-1 pathogens, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 71 (2006), 161-179.
|
[7]
|
J. K. Hale,
Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 1988.
|
[8]
|
G. Huang, X. Liu and Y. Takeuchi, Lyapunov fucntions and global stability for age-structure HIV infection model, SIAM J. Appl. Math., 72 (2012), 25-38.
doi: 10.1137/110826588.
|
[9]
|
M. Iannelli,
Mathematical Theory of Age-Structured Population Dynamics, Giardini, Pisa, 1985.
|
[10]
|
H.-D. Kwon, J. Lee and S.-D. Yang, Optimal control of an age-structured model of HIV infection, Appl. Math. Comput., 219 (2012), 2766-2779.
doi: 10.1016/j.amc.2012.09.003.
|
[11]
|
H. Kim and A. S. Perelson, Viral and latent reservoir persistence in HIV-1-infected patients on therapy, PLoS Comput. Biol, 10 (2006), e135.
doi: 10.1016/j.amc.2012.09.003.
|
[12]
|
H.-D. Kwon, J. Lee and M. Yoon, An age-structured model with immune response of HIV infection: Modeling and optimal control approach, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 153-172.
doi: 10.3934/dcdsb.2014.19.153.
|
[13]
|
X. Lai and X. Zou, Modeling the HIV-1 virus dynamics with both virus-to-cell and cell-to-cell transmission, SIAM J. Appl. Math., 74 (2014), 898-917.
doi: 10.1137/130930145.
|
[14]
|
X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl., 426 (2015), 563-584.
doi: 10.1016/j.jmaa.2014.10.086.
|
[15]
|
P. Magal, Compact attractors for time periodic age-structured population models, Electron. J. Differential Equations, 65 (2001), 1-35.
|
[16]
|
D. Mazurov, A. Ilinskaya, G. Heidecker, P. Lloyd and D. Derse, Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors, PLoS Pathog., 6 (2001), e1000788.
doi: 10.1371/journal.ppat.1000788.
|
[17]
|
C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819-841.
doi: 10.3934/mbe.2012.9.819.
|
[18]
|
A. Mojaver and H. Kheiri, Mathematical analysis of a class of HIV infection models of CD4$^+$ T-cells with combined antiretroviral therapy, Appl. Math. Comput., 259 (2015), 258-270.
doi: 10.1016/j.amc.2015.02.064.
|
[19]
|
B. Monel, E. Beaumont, D. Vendram, O. Schwartz, D. Brand and F. Mammano, HIV cell-to-cell transmission requires the production of infectious virus particles and does not proceed through Env-mediated fusion pores, J. Virol., 86 (2012), 3924-3933.
doi: 10.1128/JVI.06478-11.
|
[20]
|
V. Muller, J. F. Vigueras-Gomez and S. Bonhoeffer, Decelerating decay of latently infected cells during prolonged therapy for human immunodeficiency virus type 1 infection, J. Virol., 76 (2002), 8963-8965.
doi: 10.1128/JVI.76.17.8963-8965.2002.
|
[21]
|
P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004), 267-288.
|
[22]
|
M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.
doi: 10.1126/science.272.5258.74.
|
[23]
|
M. A. Nowak and R. M. May,
Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, 2000.
|
[24]
|
A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infectin of CD4$^+$ T cells, Math. Bisci., 114 (1993), 81-125.
|
[25]
|
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44.
doi: 10.1137/S0036144598335107.
|
[26]
|
A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, M. Markowitz and D. D. Ho, Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387 (1997), 188-191.
doi: 10.1038/387188a0.
|
[27]
|
V. Piguet and Q. Sattentau, Dangerous liaisons at the virological synapse, J. Clin. Invest., 114 (2004), 605-610.
doi: 10.1172/JCI22812.
|
[28]
|
H. Pourbashash, S. S. Pilyugin, C. C. McCluskey and P. De Leenheer, Global dynamics of within host virus models with cell-to-cell transmission, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3341-3357.
doi: 10.3934/dcdsb.2014.19.3341.
|
[29]
|
L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math., 67 (2007), 731-756.
doi: 10.1137/060663945.
|
[30]
|
H. L. Smith and H. R. Thieme,
Dynamical Systems and Population Persistence, Amer. Math. Soc. , Providence, 2011.
|
[31]
|
M. C. Strain, H. F. Gunthard and D. V. Havlir, Heterogeneous clearance rates of long-lived lymphocytes infected with HIV: Intrinsic stability predicts lifelong persistence, Proc. Natl. Acad. Sci. USA, 100 (2003), 4819-4824.
doi: 10.1073/pnas.0736332100.
|
[32]
|
M. C. Strain, S. J. Little and E. S. Daar, Effect of treatment, during primary infection, on establishment and clearance of cellular reservoirs of HIV-1, J. Infect. Dis., 191 (2005), 1410-1418.
doi: 10.1086/428777.
|
[33]
|
H. R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology, Math. Biosci., 166 (2000), 173-201.
doi: 10.1016/S0025-5564(00)00018-3.
|
[34]
|
H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068.
|
[35]
|
J. A. Walker,
Dynamical Systems and Evolution Equations, Plenum Press, New York and London, 1980.
|
[36]
|
H. Wang, R. Xu, Z. Wang and H. Chen, Glbal dynamics of a class of HIV-1 infection models with latently infected cells, Nonlinear Anal.: Model. Control, 20 (2015), 21-37.
doi: 10.15388/NA.2015.1.2.
|
[37]
|
J. Wang, J. Lang and X. Zou, Analysis of an age structured HIV infection model with both virus-to-cell infection and cell-to-cell transmission, Nonlinear Anal.: RWA, 34 (2017), 75-96.
doi: 10.1016/j.nonrwa.2016.08.001.
|
[38]
|
J. Wang, R. Zhang and T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432 (2015), 289-313.
doi: 10.1016/j.jmaa.2015.06.040.
|
[39]
|
J. Wang, R. Zhang and T. Kuniya, Mathematical analysis for an age-structured HIV infection model with saturation infection rate, Electron. J. Differential Equations, 33 (2015), 1-19.
|
[40]
|
J. Wang, R. Zhang and T. Kuniya, The dynamics of an SVIR epidemiological model with infection age, IMA J. Appl. Math., 81 (2016), 321-343.
doi: 10.1093/imamat/hxv039.
|
[41]
|
G. F. Webb,
Theory of Nonlinear Age-dependent Population Dynamics, Marcel Dekker, Inc. , New York, 1985.
|
[42]
|
Q. Wen and J. Lou, The global dynamics of a model about HIV-11 infection in vivo, Ric. Mat., 58 (2009), 77-90.
doi: 10.1007/s11587-009-0048-y.
|