|
T. M. Atanacković, S. Pilipović, B. Stanković and D. Zorica,
Fractional Calculus with Applications in Mechanics Mechanical Engineering and Solid Mechanics Series. ISTE, London; John Wiley & Sons, Inc. , Hoboken, NJ, 2014. Wave propagation, impact and variational principles.
|
|
L. C. Becker
, Resolvents and solutions of weakly singular linear Volterra integral equations, Nonlinear Anal., 74 (2011)
, 1892-1912.
doi: 10.1016/j.na.2010.10.060.
|
|
H. Brunner,
Collocation Methods for Volterra Integral and Related Functional Differential Equations volume 15 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511543234.
|
|
H. Brunner and P. J. van der Houwen,
The Numerical Solution of Volterra Equations volume 3 of CWI Monographs, North-Holland Publishing Co. , Amsterdam, 1986.
|
|
E. Capelas de Oliveira and J. A. T. Machado, A review of definitions for fractional derivatives and integral Math. Probl. Eng. , 2014 (2014), Art. ID 238459, 6 pp.
doi: 10.1155/2014/238459.
|
|
R. Caponetto, G. Dongola, L. Fortuna and I. Petráš,
Fractional Order Systems: Modeling and Control Applications volume 72 of Series on Nonlinear Science, Series A, World Scientific, Singapore, 2010.
|
|
M. Concezzi
, R. Garra
and R. Spigler
, Fractional relaxation and fractional oscillation models involving Erdélyi-Kober integrals, Fract. Calc. Appl. Anal., 18 (2015)
, 1212-1231.
doi: 10.1515/fca-2015-0070.
|
|
F. R. de Hoog
and R. S. Anderssen
, Kernel perturbations for a class of second-kind convolution Volterra equations with non-negative kernels, Appl. Math. Lett., 25 (2012)
, 1222-1225.
doi: 10.1016/j.aml.2012.02.058.
|
|
K. Diethelm,
The Analysis of Fractional Differential Equations Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-14574-2.
|
|
K. Diethelm
, N. J. Ford
and A. D. Freed
, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002)
, 3-22.
doi: 10.1023/A:1016592219341.
|
|
K. Diethelm
, N. J. Ford
and A. D. Freed
, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004)
, 31-52.
doi: 10.1023/B:NUMA.0000027736.85078.be.
|
|
J. Dixon
, On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with nonsmooth solutions, BIT, 25 (1985)
, 624-634.
doi: 10.1007/BF01936141.
|
|
R. Garra
, R. Gorenflo
, F. Polito
and Ž. Tomovski
, Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput., 242 (2014)
, 576-589.
doi: 10.1016/j.amc.2014.05.129.
|
|
R. Garrappa
, Trapezoidal methods for fractional differential equations: Theoretical and computational aspects, Math. Comput. Simulation, 110 (2015)
, 96-112.
doi: 10.1016/j.matcom.2013.09.012.
|
|
R. Garrappa
, Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami models, Commun. Nonlinear Sci. Numer. Simul., 38 (2016)
, 178-191.
doi: 10.1016/j.cnsns.2016.02.015.
|
|
R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag–Leffler Functions, Related
Topics and Applications, Springer Monographs in Mathematics. Springer, New York, 2014.
|
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,
Theory and Applications of Fractional Differential Equations volume 204 of {North-Holland Mathematics Studies}, Elsevier Science B. V. , Amsterdam, 2006.
|
|
F. Mainardi,
Fractional Calculus and Waves in Linear Viscoelasticity Imperial College Press, London, 2010. An introduction to mathematical models.
doi: 10.1142/9781848163300.
|
|
G. Pagnini
, Erdélyi-Kober fractional diffusion, Fract. Calc. Appl. Anal., 15 (2012)
, 117-127.
doi: 10.2478/s13540-012-0008-1.
|
|
I. Podlubny,
Fractional Differential Equations volume 198 of Mathematics in Science and Engineering, Academic Press, Inc. , San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.
|
|
V. E. Tarasov,
Fractional Dynamics Nonlinear Physical Science. Springer, Heidelberg; Higher Education Press, Beijing, 2010. Applications of fractional calculus to dynamics of particles, fields and media.
doi: 10.1007/978-3-642-14003-7.
|
|
G. Teschl,
Ordinary Differential Equations and Dynamical Systems volume 140 of Graduate Studies in Mathematics, American Mathematical Society, Providence, 2012.
doi: 10.1090/gsm/140.
|
|
V. V. Uchaikin,
Fractional Derivatives for Physicists and Engineers, Volume Ⅱ Nonlinear Physical Science. Higher Education Press, Beijing; Springer, Heidelberg, 2013. Applications.
doi: 10.1007/978-3-642-33911-0.
|
|
A. Young
, Approximate product-integration, Proc. Roy. Soc. London Ser. A., 224 (1954)
, 552-561.
doi: 10.1098/rspa.1954.0179.
|