December  2017, 22(10): 3771-3782. doi: 10.3934/dcdsb.2017189

Tumor growth dynamics with nutrient limitation and cell proliferation time delay

1. 

Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

2. 

Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia

3. 

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

4. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA

Received  October 2016 Revised  May 2017 Published  July 2017

It is known that avascular spherical solid tumors grow monotonically, often tends to a limiting final size. This is repeatedly confirmed by various mathematical models consisting of mostly ordinary differential equations. However, cell growth is limited by nutrient and its proliferation incurs a time delay. In this paper, we formulate a nutrient limited compartmental model of avascular spherical solid tumor growth with cell proliferation time delay and study its limiting dynamics. The nutrient is assumed to enter the tumor proportional to its surface area. This model is a modification of a recent model which is built on a two-compartment model of cancer cell growth with transitions between proliferating and quiescent cells. Due to the limitation of resources, it is imperative that the population values or densities of a population model be nonnegative and bounded without any technical conditions. We confirm that our model meets this basic requirement. From an explicit expression of the tumor final size we show that the ratio of proliferating cells to the total tumor cells tends to zero as the death rate of quiescent cells tends to zero. We also study the stability of the tumor at steady states even though there is no Jacobian at the trivial steady state. The characteristic equation at the positive steady state is complicated so we made an initial effort to study some special cases in details. We find that delay may not destabilize the positive steady state in a very extreme situation. However, in a more general case, we show that sufficiently long cell proliferation delay can produce oscillatory solutions.

Citation: Ahuod Alsheri, Ebraheem O. Alzahrani, Asim Asiri, Mohamed M. El-Dessoky, Yang Kuang. Tumor growth dynamics with nutrient limitation and cell proliferation time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3771-3782. doi: 10.3934/dcdsb.2017189
References:
[1]

J. A. Adam and B. Bellomo (ed), A Survey of Models on Tumour Immune Systems Dynamics, Birkhüauser, 1997. Google Scholar

[2]

E. O. AlzahraniA. AsiriM. M. El-Dessoky and Y. Kuang, Quiescence as an explanation of Gompertzian tumor growth revisited, Mathematical Biosciences, 254 (2014), 76-82.  doi: 10.1016/j.mbs.2014.06.009.  Google Scholar

[3]

E. O. Alzahrani and Y. Kuang, Nutrient limitations as an explanation of Gompertzian tumor growth, Discrete Cont. Dyn. Syst.-B., 21 (2016), 357-372.  doi: 10.3934/dcdsb.2016.21.357.  Google Scholar

[4]

R. P. Araujo and D. L. S. McElwain, A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol., 66 (2004), 1039-1091.  doi: 10.1016/j.bulm.2003.11.002.  Google Scholar

[5]

L. von Bertalanffy, Quantitative laws in metabolism and growth, Quart. Rev. Biol., 32 (1957), 217-231.  doi: 10.1086/401873.  Google Scholar

[6]

H. M. ByrneJ. R. KingD. L. S. McElwain and L. Preziosi, A two-phase model of solid tumour growth, Applied Mathematics Letters, 16 (2003), 567-573.  doi: 10.1016/S0893-9659(03)00038-7.  Google Scholar

[7]

S. E. Eikenberry, J. D. Nagy and Y. Kuang, The evolutionary impact of androgen levels on prostate cancer in a multi-scale mathematical model Biology Direct, 5 (2010), p24. doi: 10.1186/1745-6150-5-24.  Google Scholar

[8]

S. E. Eikenberry, C. Thalhauser and Y. Kuang, Tumor-immune interaction, surgical treatment and cancer recurrence in a mathematical model of melanoma PLoS Comput. Biol. , 5 (2009), e1000362, 18pp. doi: 10.1371/journal.pcbi.1000362.  Google Scholar

[9]

R. A. EverettY. ZhaoK. B. Flores and Y. Kuang, Data and implication based comparison of two chronic myeloid leukemia models, Math. Biosc. Eng., 10 (2013), 1501-1518.  doi: 10.3934/mbe.2013.10.1501.  Google Scholar

[10]

C. L. Frenzen and J. D. Murray, A cell kinetics justification for Gompertz equation, SIAM J. Appl. Math., 46 (1986), 614-629.  doi: 10.1137/0146042.  Google Scholar

[11]

S. Geritz and M. Gyllenberg, A mechanistic derivation of the DeAngelis-Beddington functional response, Journal of Theoretical Biology, 314 (2012), 106-108.  doi: 10.1016/j.jtbi.2012.08.030.  Google Scholar

[12]

B. Gompertz, On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Phil. Trans. Royal Soc. London, 115 (1825), 513-583.   Google Scholar

[13]

M. Gyllenberg and G. F. Webb, Quiescence as an explanation of Gompertzian tumor growth, Growth Dev Aging, 53 (1989), 25-33.   Google Scholar

[14]

M. Gyllenberg and G. F. Webb, A nonlinear structured population model of tumor growth with quiescence, J. Math. Biol., 28 (1990), 671-694.  doi: 10.1007/BF00160231.  Google Scholar

[15]

F. Kozusko and Z. Bajzer, Combining Gompertzian growth and cell population dynamics, Math. Biosc., 185 (2003), 153-167.  doi: 10.1016/S0025-5564(03)00094-4.  Google Scholar

[16]

Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, 1993.  Google Scholar

[17]

Y. Kuang, J. D. Nagy and S. E. Eikenberry Introduction to Mathematical Oncology, CRC Press, 2016.  Google Scholar

[18]

A. O. Martinez and R. J. Griego, Growth dynamics of multicell spheroids from three murine tumors, Growth, 44 (1980), 112-122.   Google Scholar

[19]

M. Marusic and S. Vuk-Pavlovic, Prediction power of mathematical models for tumor growth, Journal of Biological Systems, 1 (1993), 69-78.   Google Scholar

[20]

L. NortonR. SimonH. D. Brereton and A. E. Bogden, Predicting the course of Gompertzian growth, Nature, 264 (1976), 542-545.  doi: 10.1038/264542a0.  Google Scholar

[21]

T. Portz, Y. Kuang and J. D. Nagy, A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy AIP Advances, 2 (2012), 011002. doi: 10.1063/1.3697848.  Google Scholar

[22]

J. A. Sherratt and M. J. Chaplain, A new mathematical model for avascular tumor growth, J. Math. Biol., 43 (2001), 291-312.  doi: 10.1007/s002850100088.  Google Scholar

[23]

C. J. ThalhauserT. SankarM. C. Preul and Y. Kuang, Explicit separation of growth and motility in a new tumor cord model, Bulletin of Math. Biol., 71 (2009), 585-601.  doi: 10.1007/s11538-008-9372-8.  Google Scholar

[24]

D. Wallace and X. Guo, Properties of tumor spheroid growth exhibited by simple mathematical models, Frontiers in Oncology, 3 (2013), 1-9.  doi: 10.3389/fonc.2013.00051.  Google Scholar

[25]

R. Yafia, Dynamics analysis and limit cycle in a delayed model for tumor growth with quiescence, Nonlinear Analysis: Modelling and Control, 11 (2006), 95-110.   Google Scholar

show all references

References:
[1]

J. A. Adam and B. Bellomo (ed), A Survey of Models on Tumour Immune Systems Dynamics, Birkhüauser, 1997. Google Scholar

[2]

E. O. AlzahraniA. AsiriM. M. El-Dessoky and Y. Kuang, Quiescence as an explanation of Gompertzian tumor growth revisited, Mathematical Biosciences, 254 (2014), 76-82.  doi: 10.1016/j.mbs.2014.06.009.  Google Scholar

[3]

E. O. Alzahrani and Y. Kuang, Nutrient limitations as an explanation of Gompertzian tumor growth, Discrete Cont. Dyn. Syst.-B., 21 (2016), 357-372.  doi: 10.3934/dcdsb.2016.21.357.  Google Scholar

[4]

R. P. Araujo and D. L. S. McElwain, A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol., 66 (2004), 1039-1091.  doi: 10.1016/j.bulm.2003.11.002.  Google Scholar

[5]

L. von Bertalanffy, Quantitative laws in metabolism and growth, Quart. Rev. Biol., 32 (1957), 217-231.  doi: 10.1086/401873.  Google Scholar

[6]

H. M. ByrneJ. R. KingD. L. S. McElwain and L. Preziosi, A two-phase model of solid tumour growth, Applied Mathematics Letters, 16 (2003), 567-573.  doi: 10.1016/S0893-9659(03)00038-7.  Google Scholar

[7]

S. E. Eikenberry, J. D. Nagy and Y. Kuang, The evolutionary impact of androgen levels on prostate cancer in a multi-scale mathematical model Biology Direct, 5 (2010), p24. doi: 10.1186/1745-6150-5-24.  Google Scholar

[8]

S. E. Eikenberry, C. Thalhauser and Y. Kuang, Tumor-immune interaction, surgical treatment and cancer recurrence in a mathematical model of melanoma PLoS Comput. Biol. , 5 (2009), e1000362, 18pp. doi: 10.1371/journal.pcbi.1000362.  Google Scholar

[9]

R. A. EverettY. ZhaoK. B. Flores and Y. Kuang, Data and implication based comparison of two chronic myeloid leukemia models, Math. Biosc. Eng., 10 (2013), 1501-1518.  doi: 10.3934/mbe.2013.10.1501.  Google Scholar

[10]

C. L. Frenzen and J. D. Murray, A cell kinetics justification for Gompertz equation, SIAM J. Appl. Math., 46 (1986), 614-629.  doi: 10.1137/0146042.  Google Scholar

[11]

S. Geritz and M. Gyllenberg, A mechanistic derivation of the DeAngelis-Beddington functional response, Journal of Theoretical Biology, 314 (2012), 106-108.  doi: 10.1016/j.jtbi.2012.08.030.  Google Scholar

[12]

B. Gompertz, On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Phil. Trans. Royal Soc. London, 115 (1825), 513-583.   Google Scholar

[13]

M. Gyllenberg and G. F. Webb, Quiescence as an explanation of Gompertzian tumor growth, Growth Dev Aging, 53 (1989), 25-33.   Google Scholar

[14]

M. Gyllenberg and G. F. Webb, A nonlinear structured population model of tumor growth with quiescence, J. Math. Biol., 28 (1990), 671-694.  doi: 10.1007/BF00160231.  Google Scholar

[15]

F. Kozusko and Z. Bajzer, Combining Gompertzian growth and cell population dynamics, Math. Biosc., 185 (2003), 153-167.  doi: 10.1016/S0025-5564(03)00094-4.  Google Scholar

[16]

Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, 1993.  Google Scholar

[17]

Y. Kuang, J. D. Nagy and S. E. Eikenberry Introduction to Mathematical Oncology, CRC Press, 2016.  Google Scholar

[18]

A. O. Martinez and R. J. Griego, Growth dynamics of multicell spheroids from three murine tumors, Growth, 44 (1980), 112-122.   Google Scholar

[19]

M. Marusic and S. Vuk-Pavlovic, Prediction power of mathematical models for tumor growth, Journal of Biological Systems, 1 (1993), 69-78.   Google Scholar

[20]

L. NortonR. SimonH. D. Brereton and A. E. Bogden, Predicting the course of Gompertzian growth, Nature, 264 (1976), 542-545.  doi: 10.1038/264542a0.  Google Scholar

[21]

T. Portz, Y. Kuang and J. D. Nagy, A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy AIP Advances, 2 (2012), 011002. doi: 10.1063/1.3697848.  Google Scholar

[22]

J. A. Sherratt and M. J. Chaplain, A new mathematical model for avascular tumor growth, J. Math. Biol., 43 (2001), 291-312.  doi: 10.1007/s002850100088.  Google Scholar

[23]

C. J. ThalhauserT. SankarM. C. Preul and Y. Kuang, Explicit separation of growth and motility in a new tumor cord model, Bulletin of Math. Biol., 71 (2009), 585-601.  doi: 10.1007/s11538-008-9372-8.  Google Scholar

[24]

D. Wallace and X. Guo, Properties of tumor spheroid growth exhibited by simple mathematical models, Frontiers in Oncology, 3 (2013), 1-9.  doi: 10.3389/fonc.2013.00051.  Google Scholar

[25]

R. Yafia, Dynamics analysis and limit cycle in a delayed model for tumor growth with quiescence, Nonlinear Analysis: Modelling and Control, 11 (2006), 95-110.   Google Scholar

Figure 1.  Bifurcation diagrams of model (2.4) with $f(r)= \frac{kr}{ar+1}$ and $g(r)= \frac{c}{r+m}$ using the cell proliferation time delay $\tau$ as the bifurcation parameter. The parameter values are $k=2, a=1, m=2, \mu=0.1, c=1, \theta=2/3.$ The positive steady state appears to be globally attractive for short time delay but lost its stability for larger values of $\tau$. As cell proliferation time delay increases, tumor size oscillates more noticeably and at a lower lever. Notice that the percentage of the average amount of proliferating cells decreases as $\tau$ increases
[1]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[2]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[3]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[4]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[5]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[6]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[7]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[8]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[9]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[10]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[11]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[14]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[15]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[16]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[19]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[20]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (124)
  • HTML views (63)
  • Cited by (0)

[Back to Top]