December  2017, 22(10): 3783-3795. doi: 10.3934/dcdsb.2017190

Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions

1. 

College of Science, Hohai University, Nanjing 210098, China

2. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1, Czech Republic

3. 

College of Science, Hohai University, Nanjing 210098, China

* Corresponding author: Wei Liu

The hospitality of the Hohai University in Nanjing during the second author's stay in OctoberNovember 2016 is gratefully acknowledged

Received  November 2016 Revised  April 2017 Published  July 2017

Fund Project: This work was supported by the Program of High-end Foreign Experts of the SAFEA (No. GDW20163200216). The work of the second author was partially supported by the GACR GrantČ 15-12227S and RVO: 67985840.

It is well known that the Prandtl-Ishlinskii hysteresis operator is locally Lipschitz continuous in the space of continuous functions provided its primary response curve is convex or concave. This property can easily be extended to any absolutely continuous primary response curve with derivative of locally bounded variation. Under the same condition, the Prandtl-Ishlinskii operator in the Kurzweil integral setting is locally Lipschitz continuous also in the space of regulated functions. This paper shows that the Prandtl-Ishlinskii operator is still continuous if the primary response curve is only monotone and continuous, and that it may not even be locally Hölder continuous for continuously differentiable primary response curves.

Citation: Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190
References:
[1]

M. Al JanaidehS. Rakheja and C.-Y. Su, An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control, IEEE/ASME Transactions on Mechatronics, 16 (2011), 734-744.  doi: 10.1109/TMECH.2010.2052366.  Google Scholar

[2]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Appl. Math. Sci. , 121, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[3]

R. CrossM. Grinfeld and H. Lamba, A mean-field model of investor behaviour, Journal of Physics: Conference Series, 55 (2006), 55-62.  doi: 10.1088/1742-6596/55/1/005.  Google Scholar

[4]

R. CrossM. Grinfeld and H. Lamba, Hysteresis and Economics: Taking the economic past into account, IEEE Control Systems Magazine, 29 (2009), 30-43.  doi: 10.1109/MCS.2008.930445.  Google Scholar

[5]

R. CrossH. McNamaraA. Pokrovskii and D. Rachinskii, A new paradigm for modelling hysteresis in macroeconomic flows, Physica B: Condensed Matter, 403 (2008), 231-236.  doi: 10.1016/j.physb.2007.08.017.  Google Scholar

[6]

M. GrinfeldH. Lamba and R. Cross, A mesoscopic stock market model with hysteretic agents, Discrete Continuous Dynam. Systems -B, 18 (2013), 403-415.  doi: 10.3934/dcdsb.2013.18.403.  Google Scholar

[7]

A. Yu. Ishlinskii, Some applications of statistical methods to describing deformations of bodies, Izv. AN SSSR, Techn. Ser., 9 (1944), 583-590.   Google Scholar

[8]

M. A. Krasnosel'skii and A. V. Pokrovskii, Systems with Hysteresis, Springer: Berlin; 1989. Russian edition: Nauka: Moscow; 1983. doi: 10.1007/978-3-642-61302-9.  Google Scholar

[9]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations Gakuto Int. Series Math. Sci. & Appl. , Vol. 8, Gakkotosho, Tokyo 1996.  Google Scholar

[10]

P. Krejčí, The Kurzweil integral and hysteresis, Journal of Physics: Conference Series, 55 (2006), 144-154.  doi: 10.1088/1742-6596/55/1/014.  Google Scholar

[11]

P. KrejčíH. LambaS. Melnik and D. Rachinskii, Kurzweil integral representation of interacting Prandtl-Ishlinskii operators, Discrete Continuous Dynam. Systems -B, 20 (2015), 2949-2965.  doi: 10.3934/dcdsb.2015.20.2949.  Google Scholar

[12]

P. KrejčíH. LambaG.A. Monteiro and D. Rachinskii, The Kurzweil integral in financial market modeling, Math. Bohem., 141 (2016), 261-286.  doi: 10.21136/MB.2016.18.  Google Scholar

[13]

P. Krejčí and Ph. Laurençot, Hysteresis filtering in the space of bounded measurable functions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5 (2002), 755-772.   Google Scholar

[14]

P. Krejčí and Ph. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.   Google Scholar

[15]

K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach, European Journal of Control, 9 (2003), 407-418.  doi: 10.3166/ejc.9.407-418.  Google Scholar

[16]

J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J.(7), 82 (1957), 418-449.   Google Scholar

[17]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. Ang. Math. Mech., 8 (1928), 85-106.   Google Scholar

[18]

M. Sjöström and C. Visone, "Moving" Prandtl-Ishlinskii operators with compensator in a closed form, Physica B -Condensed Matter, 372 (2006), 97-100.  doi: 10.1016/j.physb.2005.10.016.  Google Scholar

show all references

References:
[1]

M. Al JanaidehS. Rakheja and C.-Y. Su, An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control, IEEE/ASME Transactions on Mechatronics, 16 (2011), 734-744.  doi: 10.1109/TMECH.2010.2052366.  Google Scholar

[2]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Appl. Math. Sci. , 121, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[3]

R. CrossM. Grinfeld and H. Lamba, A mean-field model of investor behaviour, Journal of Physics: Conference Series, 55 (2006), 55-62.  doi: 10.1088/1742-6596/55/1/005.  Google Scholar

[4]

R. CrossM. Grinfeld and H. Lamba, Hysteresis and Economics: Taking the economic past into account, IEEE Control Systems Magazine, 29 (2009), 30-43.  doi: 10.1109/MCS.2008.930445.  Google Scholar

[5]

R. CrossH. McNamaraA. Pokrovskii and D. Rachinskii, A new paradigm for modelling hysteresis in macroeconomic flows, Physica B: Condensed Matter, 403 (2008), 231-236.  doi: 10.1016/j.physb.2007.08.017.  Google Scholar

[6]

M. GrinfeldH. Lamba and R. Cross, A mesoscopic stock market model with hysteretic agents, Discrete Continuous Dynam. Systems -B, 18 (2013), 403-415.  doi: 10.3934/dcdsb.2013.18.403.  Google Scholar

[7]

A. Yu. Ishlinskii, Some applications of statistical methods to describing deformations of bodies, Izv. AN SSSR, Techn. Ser., 9 (1944), 583-590.   Google Scholar

[8]

M. A. Krasnosel'skii and A. V. Pokrovskii, Systems with Hysteresis, Springer: Berlin; 1989. Russian edition: Nauka: Moscow; 1983. doi: 10.1007/978-3-642-61302-9.  Google Scholar

[9]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations Gakuto Int. Series Math. Sci. & Appl. , Vol. 8, Gakkotosho, Tokyo 1996.  Google Scholar

[10]

P. Krejčí, The Kurzweil integral and hysteresis, Journal of Physics: Conference Series, 55 (2006), 144-154.  doi: 10.1088/1742-6596/55/1/014.  Google Scholar

[11]

P. KrejčíH. LambaS. Melnik and D. Rachinskii, Kurzweil integral representation of interacting Prandtl-Ishlinskii operators, Discrete Continuous Dynam. Systems -B, 20 (2015), 2949-2965.  doi: 10.3934/dcdsb.2015.20.2949.  Google Scholar

[12]

P. KrejčíH. LambaG.A. Monteiro and D. Rachinskii, The Kurzweil integral in financial market modeling, Math. Bohem., 141 (2016), 261-286.  doi: 10.21136/MB.2016.18.  Google Scholar

[13]

P. Krejčí and Ph. Laurençot, Hysteresis filtering in the space of bounded measurable functions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5 (2002), 755-772.   Google Scholar

[14]

P. Krejčí and Ph. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.   Google Scholar

[15]

K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach, European Journal of Control, 9 (2003), 407-418.  doi: 10.3166/ejc.9.407-418.  Google Scholar

[16]

J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J.(7), 82 (1957), 418-449.   Google Scholar

[17]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. Ang. Math. Mech., 8 (1928), 85-106.   Google Scholar

[18]

M. Sjöström and C. Visone, "Moving" Prandtl-Ishlinskii operators with compensator in a closed form, Physica B -Condensed Matter, 372 (2006), 97-100.  doi: 10.1016/j.physb.2005.10.016.  Google Scholar

Figure 1.  The memory curves $\lambda(r)$ (the bold solid line) and $\hat \lambda(r)$ (the thin solid line)
Figure 2.  The memory curves $\lambda(r)$ (the solid line) and $\hat \lambda(r)$ (the {dashed} line)
Figure 3.  The primary response curve $\psi_1$ (the bold solid line), its derivative $\psi_1'$ (the bold dashed line), and the piecewise linear regularization $\psi_2'$ of $\psi_1'$ (the thin solid line)
[1]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[4]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[5]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[6]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[9]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[10]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[11]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[12]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[13]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[14]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[15]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[16]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[18]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[19]

Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020119

[20]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (42)
  • HTML views (44)
  • Cited by (0)

Other articles
by authors

[Back to Top]