
-
Previous Article
Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems
- DCDS-B Home
- This Issue
-
Next Article
On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity
Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model
1. | Inria Sophia Antipolis -Méditerranée, Université Côte d'Azur, Inria, CNRS, LJAD, 2004 route des Lucioles -BP 93,06902 Sophia Antipolis Cedex, France |
2. | Laboratoire de Mathématiques de Versailles, UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France |
We introduce a second order model for traffic flow with moving bottlenecks. The model consists of the × 2$ Aw-Rascle-Zhang system with a point-wise flow constraint whose trajectory is governed by an ordinary differential equation. We define two Riemann solvers, characterize the corresponding invariant domains and propose numerical strategies, which are effective in capturing the non-classical shocks due to the constraint activation.
References:
[1] |
N. Aguillon,
Capturing nonclassical shocks in nonlinear elastodynamic with a conservative finite volume scheme, Interfaces Free Bound., 18 (2016), 137-159.
doi: 10.4171/IFB/360. |
[2] |
N. Aguillon and C. Chalons,
Nondiffusive conservative schemes based on approximate Riemann solvers for Lagrangian gas dynamics, ESAIM Math. Model. Numer. Anal., 50 (2016), 1887-1916.
doi: 10.1051/m2an/2016010. |
[3] |
B. Andreianov, C. Donadello and M. D. Rosini,
A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci., 26 (2016), 751-802.
doi: 10.1142/S0218202516500172. |
[4] |
B. Andreianov, P. Goatin and N. Seguin,
Finite volume schemes for locally constrained conservation laws, Numer. Math., 115 (2010), 609-645.
doi: 10.1007/s00211-009-0286-7. |
[5] |
B. P. Andreianov, C. Donadello, U. Razafison, J. Y. Rolland and M. D. Rosini,
Solutions of the Aw-Rascle-Zhang system with point constraints, Netw. Heterog. Media, 11 (2016), 29-47.
doi: 10.3934/nhm.2016.11.29. |
[6] |
A. Aw and M. Rascle,
Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic).
doi: 10.1137/S0036139997332099. |
[7] |
B. Boutin, C. Chalons, F. Lagoutiére and P. G. LeFloch,
A convergent and conservative scheme for nonclassical solutions based on kinetic relations. I, Interfaces Free Bound., 10 (2008), 399-421.
doi: 10.4171/IFB/195. |
[8] |
G. Bretti and B. Piccoli,
A tracking algorithm for car paths on road networks, SIAM J. Appl. Dyn. Syst., 7 (2008), 510-531.
doi: 10.1137/070697768. |
[9] |
C. Chalons, M. L. Delle Monache and P. Goatin, A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem, Preprint, 2014. |
[10] |
C. Chalons and P. Goatin,
Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Commun. Math. Sci., 5 (2007), 533-551.
doi: 10.4310/CMS.2007.v5.n3.a2. |
[11] |
C. Chalons, P. Goatin and N. Seguin,
General constrained conservation laws. Application to pedestrian flow modeling, Netw. Heterog. Media, 8 (2013), 433-463.
doi: 10.3934/nhm.2013.8.433. |
[12] |
R. M. Colombo and P. Goatin,
A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.
doi: 10.1016/j.jde.2006.10.014. |
[13] |
R. M. Colombo, P. Goatin and M. D. Rosini,
On the modelling and management of traffic, ESAIM Math. Model. Numer. Anal., 45 (2011), 853-872.
doi: 10.1051/m2an/2010105. |
[14] |
M. L. Delle Monache and P. Goatin,
A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 435-447.
doi: 10.3934/dcdss.2014.7.435. |
[15] |
M. L. Delle Monache and P. Goatin,
Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, J. Differential Equations, 257 (2014), 4015-4029.
doi: 10.1016/j.jde.2014.07.014. |
[16] |
M. Garavello and P. Goatin,
The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648.
doi: 10.1016/j.jmaa.2011.01.033. |
[17] |
M. Garavello and S. Villa, The Cauchy problem for the Aw-Rascle-Zhang traffic model with locally constrained flow,
J. Hyperbolic Differ. Equ. , to appear. |
[18] |
S. N. Kružkov,
First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
|
[19] |
P. D. Lax,
Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMF-NSF Regional Conf. Series in Appl. Math. SIAM, Philadelphia, PA, 1973. |
[20] |
P. LeFloch,
Hyperbolic Systems of Conservation Laws, The theory of classical and nonclassical shock waves, Lectures in Mathematics. Birkhäuser Verlag, Basel, 2002.
doi: 10.1007/978-3-0348-8150-0. |
[21] |
B. Temple,
Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., 280 (1983), 781-795.
doi: 10.1090/S0002-9947-1983-0716850-2. |
[22] |
S. Villa, The Aw-Rascle-Zhang Model with Constraints, Master thesis, Universitá degli Studi di Milano -Bicocca, 2015. arXiv: 1605.00632. |
[23] |
H. Zhang,
A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.
doi: 10.1016/S0191-2615(00)00050-3. |
show all references
References:
[1] |
N. Aguillon,
Capturing nonclassical shocks in nonlinear elastodynamic with a conservative finite volume scheme, Interfaces Free Bound., 18 (2016), 137-159.
doi: 10.4171/IFB/360. |
[2] |
N. Aguillon and C. Chalons,
Nondiffusive conservative schemes based on approximate Riemann solvers for Lagrangian gas dynamics, ESAIM Math. Model. Numer. Anal., 50 (2016), 1887-1916.
doi: 10.1051/m2an/2016010. |
[3] |
B. Andreianov, C. Donadello and M. D. Rosini,
A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci., 26 (2016), 751-802.
doi: 10.1142/S0218202516500172. |
[4] |
B. Andreianov, P. Goatin and N. Seguin,
Finite volume schemes for locally constrained conservation laws, Numer. Math., 115 (2010), 609-645.
doi: 10.1007/s00211-009-0286-7. |
[5] |
B. P. Andreianov, C. Donadello, U. Razafison, J. Y. Rolland and M. D. Rosini,
Solutions of the Aw-Rascle-Zhang system with point constraints, Netw. Heterog. Media, 11 (2016), 29-47.
doi: 10.3934/nhm.2016.11.29. |
[6] |
A. Aw and M. Rascle,
Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic).
doi: 10.1137/S0036139997332099. |
[7] |
B. Boutin, C. Chalons, F. Lagoutiére and P. G. LeFloch,
A convergent and conservative scheme for nonclassical solutions based on kinetic relations. I, Interfaces Free Bound., 10 (2008), 399-421.
doi: 10.4171/IFB/195. |
[8] |
G. Bretti and B. Piccoli,
A tracking algorithm for car paths on road networks, SIAM J. Appl. Dyn. Syst., 7 (2008), 510-531.
doi: 10.1137/070697768. |
[9] |
C. Chalons, M. L. Delle Monache and P. Goatin, A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem, Preprint, 2014. |
[10] |
C. Chalons and P. Goatin,
Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Commun. Math. Sci., 5 (2007), 533-551.
doi: 10.4310/CMS.2007.v5.n3.a2. |
[11] |
C. Chalons, P. Goatin and N. Seguin,
General constrained conservation laws. Application to pedestrian flow modeling, Netw. Heterog. Media, 8 (2013), 433-463.
doi: 10.3934/nhm.2013.8.433. |
[12] |
R. M. Colombo and P. Goatin,
A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.
doi: 10.1016/j.jde.2006.10.014. |
[13] |
R. M. Colombo, P. Goatin and M. D. Rosini,
On the modelling and management of traffic, ESAIM Math. Model. Numer. Anal., 45 (2011), 853-872.
doi: 10.1051/m2an/2010105. |
[14] |
M. L. Delle Monache and P. Goatin,
A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 435-447.
doi: 10.3934/dcdss.2014.7.435. |
[15] |
M. L. Delle Monache and P. Goatin,
Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, J. Differential Equations, 257 (2014), 4015-4029.
doi: 10.1016/j.jde.2014.07.014. |
[16] |
M. Garavello and P. Goatin,
The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648.
doi: 10.1016/j.jmaa.2011.01.033. |
[17] |
M. Garavello and S. Villa, The Cauchy problem for the Aw-Rascle-Zhang traffic model with locally constrained flow,
J. Hyperbolic Differ. Equ. , to appear. |
[18] |
S. N. Kružkov,
First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
|
[19] |
P. D. Lax,
Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMF-NSF Regional Conf. Series in Appl. Math. SIAM, Philadelphia, PA, 1973. |
[20] |
P. LeFloch,
Hyperbolic Systems of Conservation Laws, The theory of classical and nonclassical shock waves, Lectures in Mathematics. Birkhäuser Verlag, Basel, 2002.
doi: 10.1007/978-3-0348-8150-0. |
[21] |
B. Temple,
Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., 280 (1983), 781-795.
doi: 10.1090/S0002-9947-1983-0716850-2. |
[22] |
S. Villa, The Aw-Rascle-Zhang Model with Constraints, Master thesis, Universitá degli Studi di Milano -Bicocca, 2015. arXiv: 1605.00632. |
[23] |
H. Zhang,
A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.
doi: 10.1016/S0191-2615(00)00050-3. |










[1] |
Alberto Bressan, Fang Yu. Continuous Riemann solvers for traffic flow at a junction. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4149-4171. doi: 10.3934/dcds.2015.35.4149 |
[2] |
Florent Berthelin, Thierry Goudon, Bastien Polizzi, Magali Ribot. Asymptotic problems and numerical schemes for traffic flows with unilateral constraints describing the formation of jams. Networks and Heterogeneous Media, 2017, 12 (4) : 591-617. doi: 10.3934/nhm.2017024 |
[3] |
Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435 |
[4] |
Raimund Bürger, Kenneth H. Karlsen, John D. Towers. On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 461-485. doi: 10.3934/nhm.2010.5.461 |
[5] |
Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107 |
[6] |
Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024 |
[7] |
Alexander Kurganov, Anthony Polizzi. Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4 (3) : 431-451. doi: 10.3934/nhm.2009.4.431 |
[8] |
Nguyen Hai Son. Solution stability to parametric distributed optimal control problems with finite unilateral constraints. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021047 |
[9] |
Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks and Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010 |
[10] |
Alberto Bressan, Anders Nordli. The Riemann solver for traffic flow at an intersection with buffer of vanishing size. Networks and Heterogeneous Media, 2017, 12 (2) : 173-189. doi: 10.3934/nhm.2017007 |
[11] |
Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks and Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195 |
[12] |
Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028 |
[13] |
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 |
[14] |
Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161 |
[15] |
Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773 |
[16] |
Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287 |
[17] |
Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165 |
[18] |
Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013 |
[19] |
Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689 |
[20] |
Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]