December  2017, 22(10): 3953-3965. doi: 10.3934/dcdsb.2017203

Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems

1. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

2. 

Department de Matemátiques, Universitat Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

3. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Weinian Zhang

Received  November 2016 Revised  June 2017 Published  August 2017

Fund Project: The first author is supported by NSFC grant #11471228. The second author is partially supported by the MINECO grants MTM2016-77278-P and MTM2013-40998-P, an AGAUR grant number 2014SGR-568, the grant FP7-PEOPLE-2012-IRSES 318999, and from the recruitment program of high-end foreign experts of China. The third author is supported by NSFC grants #11231001, #11221101

It is well known that the cyclicity of a Hopf bifurcation in continuous quadratic polynomial differential systems in $\mathbb{R}^2$ is $$. In contrast here we consider discontinuous differential systems in $\mathbb{R}^2$ defined in two half-planes separated by a straight line. In one half plane we have a general linear center at the origin of $\mathbb{R}^2$, and in the other a general quadratic polynomial differential system having a focus or a center at the origin of $\mathbb{R}^2$. Using averaging theory, we prove that the cyclicity of a Hopf bifurcation for such discontinuous differential systems is at least 5. Our computations show that only one of the averaged functions of fifth order can produce 5 limit cycles and there are no more limit cycles up to sixth order averaged function.

Citation: Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203
References:
[1]

A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966.Google Scholar

[2]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Math. Sbornik, 30 (1952), 181-196 (in Russian); Transl. Amer. Math. Soc. , 1954 (1954), 19pp.Google Scholar

[3]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems, Theory and Applications, Springer-Verlag, London, 2008. Google Scholar

[4]

N. N. Bogoliubov, On Some Statistical Methods in Mathematical Physics, Akademiya Nauk Ukrainsko$\check{\rm i}$, 1945. Google Scholar

[5]

N. N. Bogoliubov and N. Krylov, The Application of Methods of Nonlinear Mechanics in the Theory of Stationary Oscillations, Ukrainian Academy of Science, 1934.Google Scholar

[6]

X. Chen and Z. Du, Limit cycles bifurcate from centers of discontinuous quadratic systems, Comput. Math. Appl., 59 (2010), 3836-3848. doi: 10.1016/j.camwa.2010.04.019. Google Scholar

[7]

X. ChenV. G. Romanovski and W. Zhang, Degenerate Hopf bifurcations in a family of FF-type switching systems, J. Math. Anal. Appl., 432 (2015), 1058-1076. doi: 10.1016/j.jmaa.2015.07.036. Google Scholar

[8]

X. Chen and W. Zhang, Normal forms of planar switching systems, Disc. Cont. Dyn. Syst., 36 (2016), 6715-6736. doi: 10.3934/dcds.2016092. Google Scholar

[9]

C. Christopher and C. Li, Limit Cycles of Differential Equations, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser Verlag, Basel, 2007. Google Scholar

[10]

B. CollA. Gasull and R. Prohens, Degenerate Hopf bifurcations in discontinuous planar systems, J. Math. Anal. Appl., 253 (2001), 671-690. doi: 10.1006/jmaa.2000.7188. Google Scholar

[11]

B. CollA. Gasull and R. Prohens, Bifurcation of limit cycles from two families of centers, Dyn. Contin. Disc. Impu. Syst., 12 (2005), 275-287. Google Scholar

[12]

W. A. Coppel, A survey on quadratic systems, J. Diff. Equa., 2 (1966), 293-304. doi: 10.1016/0022-0396(66)90070-2. Google Scholar

[13] F. DumortierJ. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, New York, 2006. Google Scholar
[14]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic, Amsterdam, 1988. doi: 10.1007/978-94-015-7793-9. Google Scholar

[15]

A. Gasull and J. Torregrosa, Center-focus problem for discontinuous planar differential equations, Int. J. Bifurc. Chaos, 13 (2003), 1755-1765. doi: 10.1142/S0218127403007618. Google Scholar

[16]

J. GinéM. Grau and J. Llibre, Averaging theory at any order for computing periodic orbits, Physica D, 250 (2013), 58-65. doi: 10.1016/j.physd.2013.01.015. Google Scholar

[17]

M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Diff. Equa., 248 (2010), 2399-2416. doi: 10.1016/j.jde.2009.10.002. Google Scholar

[18]

Yu. Ilyashenko, Centennial history of Hilbert's $16$th problem, Bull. (New Series) Amer. Math. Soc., 39 (2002), 301-354. doi: 10.1090/S0273-0979-02-00946-1. Google Scholar

[19]

W. Kapteyn, On the midpoints of integral curves of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, 19 (1911), 1446-1457. Google Scholar

[20]

W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, 20 (1912), 1354-1365. Google Scholar

[21]

M. Kunze, Non-Smooth Dynamical Systems Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103843. Google Scholar

[22]

J. Li, Hilbert's $16$th problem and bifurcations of planar polynomial vector fields, Int. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106. doi: 10.1142/S0218127403006352. Google Scholar

[23]

J. LlibreD. D. Novaes and M. A. Teixeira, Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27 (2014), 563-583. doi: 10.1088/0951-7715/27/3/563. Google Scholar

[24]

J. LlibreD. D. Novaes and M. A. Teixeira, On the birth of limit cycles for non-smooth dynamical systems, Bull. Sci. math., 139 (2015), 229-244. doi: 10.1016/j.bulsci.2014.08.011. Google Scholar

[25]

O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844. doi: 10.1016/j.physd.2012.08.002. Google Scholar

[26]

P. Patou, Sur le mouvement d'un systéme soumis à des forces à courte période, Bull. Soc. Math. France, 56 (1928), 98-139. Google Scholar

[27]

D. J. W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science A, vol 69, World Scientific, Singapore, 2010Google Scholar

show all references

References:
[1]

A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966.Google Scholar

[2]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Math. Sbornik, 30 (1952), 181-196 (in Russian); Transl. Amer. Math. Soc. , 1954 (1954), 19pp.Google Scholar

[3]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems, Theory and Applications, Springer-Verlag, London, 2008. Google Scholar

[4]

N. N. Bogoliubov, On Some Statistical Methods in Mathematical Physics, Akademiya Nauk Ukrainsko$\check{\rm i}$, 1945. Google Scholar

[5]

N. N. Bogoliubov and N. Krylov, The Application of Methods of Nonlinear Mechanics in the Theory of Stationary Oscillations, Ukrainian Academy of Science, 1934.Google Scholar

[6]

X. Chen and Z. Du, Limit cycles bifurcate from centers of discontinuous quadratic systems, Comput. Math. Appl., 59 (2010), 3836-3848. doi: 10.1016/j.camwa.2010.04.019. Google Scholar

[7]

X. ChenV. G. Romanovski and W. Zhang, Degenerate Hopf bifurcations in a family of FF-type switching systems, J. Math. Anal. Appl., 432 (2015), 1058-1076. doi: 10.1016/j.jmaa.2015.07.036. Google Scholar

[8]

X. Chen and W. Zhang, Normal forms of planar switching systems, Disc. Cont. Dyn. Syst., 36 (2016), 6715-6736. doi: 10.3934/dcds.2016092. Google Scholar

[9]

C. Christopher and C. Li, Limit Cycles of Differential Equations, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser Verlag, Basel, 2007. Google Scholar

[10]

B. CollA. Gasull and R. Prohens, Degenerate Hopf bifurcations in discontinuous planar systems, J. Math. Anal. Appl., 253 (2001), 671-690. doi: 10.1006/jmaa.2000.7188. Google Scholar

[11]

B. CollA. Gasull and R. Prohens, Bifurcation of limit cycles from two families of centers, Dyn. Contin. Disc. Impu. Syst., 12 (2005), 275-287. Google Scholar

[12]

W. A. Coppel, A survey on quadratic systems, J. Diff. Equa., 2 (1966), 293-304. doi: 10.1016/0022-0396(66)90070-2. Google Scholar

[13] F. DumortierJ. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, New York, 2006. Google Scholar
[14]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic, Amsterdam, 1988. doi: 10.1007/978-94-015-7793-9. Google Scholar

[15]

A. Gasull and J. Torregrosa, Center-focus problem for discontinuous planar differential equations, Int. J. Bifurc. Chaos, 13 (2003), 1755-1765. doi: 10.1142/S0218127403007618. Google Scholar

[16]

J. GinéM. Grau and J. Llibre, Averaging theory at any order for computing periodic orbits, Physica D, 250 (2013), 58-65. doi: 10.1016/j.physd.2013.01.015. Google Scholar

[17]

M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Diff. Equa., 248 (2010), 2399-2416. doi: 10.1016/j.jde.2009.10.002. Google Scholar

[18]

Yu. Ilyashenko, Centennial history of Hilbert's $16$th problem, Bull. (New Series) Amer. Math. Soc., 39 (2002), 301-354. doi: 10.1090/S0273-0979-02-00946-1. Google Scholar

[19]

W. Kapteyn, On the midpoints of integral curves of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, 19 (1911), 1446-1457. Google Scholar

[20]

W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, 20 (1912), 1354-1365. Google Scholar

[21]

M. Kunze, Non-Smooth Dynamical Systems Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103843. Google Scholar

[22]

J. Li, Hilbert's $16$th problem and bifurcations of planar polynomial vector fields, Int. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106. doi: 10.1142/S0218127403006352. Google Scholar

[23]

J. LlibreD. D. Novaes and M. A. Teixeira, Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27 (2014), 563-583. doi: 10.1088/0951-7715/27/3/563. Google Scholar

[24]

J. LlibreD. D. Novaes and M. A. Teixeira, On the birth of limit cycles for non-smooth dynamical systems, Bull. Sci. math., 139 (2015), 229-244. doi: 10.1016/j.bulsci.2014.08.011. Google Scholar

[25]

O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844. doi: 10.1016/j.physd.2012.08.002. Google Scholar

[26]

P. Patou, Sur le mouvement d'un systéme soumis à des forces à courte période, Bull. Soc. Math. France, 56 (1928), 98-139. Google Scholar

[27]

D. J. W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science A, vol 69, World Scientific, Singapore, 2010Google Scholar

Table 1.  The numbers of positive simple zeros of the averaged function $f_i(r)$ for $i=1, 2, 3.$
$\#Z_+(f_1)$condition for $f_1\equiv 0$ $\#Z_+(f_2)$condition for $f_2\equiv 0$ $\#Z_+(f_3)$
$1$ $C_1$ $2$ $C_{11}$ $3$
$C_{12}$ $2$
$C_{13}$ $3$
$\#Z_+(f_1)$condition for $f_1\equiv 0$ $\#Z_+(f_2)$condition for $f_2\equiv 0$ $\#Z_+(f_3)$
$1$ $C_1$ $2$ $C_{11}$ $3$
$C_{12}$ $2$
$C_{13}$ $3$
Table 2.  The numbers of positive simple zeros of the averaged functions $f_4(r)$ and $f_5(r)$
condition for $f_3\equiv 0$ $\#Z_+(f_4)$condition for $f_4\equiv 0$ $\#Z_+(f_5)$
$C_{111}$ $3$ $C_{1111}$ $3$
$C_{1112}$$4$
$C_{112}$ $3$ $C_{1121}$ $4$
$C_{1122}$$4$
$C_{113}$ $2$ $C_{1131}$ $4$
$C_{114}$ $4$ $C_{1141}$ $4$
$C_{1142}$ $5$
$C_{121}$ $3$ $C_{1211}$ $3$
$C_{1212}$ $4$
$C_{1213}$$3$
$C_{122}$ $2$ $C_{1221}$ $2$
$C_{1222}$ $3$
$C_{1223}$ $3$
$C_{123}$ $3$ $C_{1231}$ $3$
$C_{1232}$ $3$
$C_{1233}$ $2$
$C_{131}$ $3$ $C_{1311}$ $3$
$C_{1312}$ $2$
$C_{1313}$ $3$
$C_{132}$ $3$ $C_{1321}$ $3$
$C_{1322}$ $3$
$C_{1323}$ $2$
$C_{133}$ $3$ $C_{1331}$ $3$
condition for $f_3\equiv 0$ $\#Z_+(f_4)$condition for $f_4\equiv 0$ $\#Z_+(f_5)$
$C_{111}$ $3$ $C_{1111}$ $3$
$C_{1112}$$4$
$C_{112}$ $3$ $C_{1121}$ $4$
$C_{1122}$$4$
$C_{113}$ $2$ $C_{1131}$ $4$
$C_{114}$ $4$ $C_{1141}$ $4$
$C_{1142}$ $5$
$C_{121}$ $3$ $C_{1211}$ $3$
$C_{1212}$ $4$
$C_{1213}$$3$
$C_{122}$ $2$ $C_{1221}$ $2$
$C_{1222}$ $3$
$C_{1223}$ $3$
$C_{123}$ $3$ $C_{1231}$ $3$
$C_{1232}$ $3$
$C_{1233}$ $2$
$C_{131}$ $3$ $C_{1311}$ $3$
$C_{1312}$ $2$
$C_{1313}$ $3$
$C_{132}$ $3$ $C_{1321}$ $3$
$C_{1322}$ $3$
$C_{1323}$ $2$
$C_{133}$ $3$ $C_{1331}$ $3$
Table 3.  The number of positive simple zeros of the averaged function $f_6(r)$
$condition for f_4\equiv 0$ $condition for f_5\equiv 0$ $\#Z_+(f_6)$
$C_{1111}$ $C_{11111}$ $3$
$C_{11112}$ $4$
$C_{1112}$ $C_{11121}$ $4$
$C_{1121}$ $C_{11211}$ $4$
$C_{1122}$ $C_{11221}$ $4$
$C_{1131}$ $C_{11311}$ $4$
$C_{1141}$ $C_{11411}$ $4$
$C_{1211}$ $C_{12111}$ $3$
$C_{12112}$ $3$
$C_{12113}$ $3$
$C_{1212}$ $C_{12121}$ $3$
$C_{12122}$ $3$
$C_{12123}$ $4$
$C_{1213}$ $C_{12131}$ $3$
$C_{12132}$ $4$
$C_{12133}$ $3$
$C_{1221}$ $C_{12211}$ $2$
$C_{12212}$ $3$
$C_{12213}$ $3$
$C_{1222}$ $C_{12221}$ $3$
$C_{12222}$ $3$
$C_{12223}$ $2$
$C_{1223}$ $C_{12231}$ $3$
$C_{12232}$ $4$
$C_{12233}$ $3$
$C_{1231}$ $C_{12311}$ $2$
$C_{12312}$ $3$
$C_{12313}$ $3$
$C_{1232}$ $C_{12321}$ $3$
$C_{12322}$ $3$
$C_{12323}$ $2$
$C_{1233}$ $C_{12331}$ $3$
$C_{1311}$ $C_{13111}$ $3$
$C_{13112}$ $3$
$C_{13113}$ $2$
$C_{13121}$ $C_{13121}$ $3$
$C_{1313}$ $C_{13131}$ $3$
$C_{13132}$ $3$
$C_{13133}$ $2$
$C_{1321}$ $C_{13211}$ $3$
$C_{13212}$ $3$
$C_{13213}$ $2$
$C_{1322}$ $C_{13221}$ $3$
$C_{13222}$ $3$
$C_{13223}$ $2$
$C_{1323}$ $C_{13231}$ $3$
$C_{1331}$ $C_{13311}$ $4$
$condition for f_4\equiv 0$ $condition for f_5\equiv 0$ $\#Z_+(f_6)$
$C_{1111}$ $C_{11111}$ $3$
$C_{11112}$ $4$
$C_{1112}$ $C_{11121}$ $4$
$C_{1121}$ $C_{11211}$ $4$
$C_{1122}$ $C_{11221}$ $4$
$C_{1131}$ $C_{11311}$ $4$
$C_{1141}$ $C_{11411}$ $4$
$C_{1211}$ $C_{12111}$ $3$
$C_{12112}$ $3$
$C_{12113}$ $3$
$C_{1212}$ $C_{12121}$ $3$
$C_{12122}$ $3$
$C_{12123}$ $4$
$C_{1213}$ $C_{12131}$ $3$
$C_{12132}$ $4$
$C_{12133}$ $3$
$C_{1221}$ $C_{12211}$ $2$
$C_{12212}$ $3$
$C_{12213}$ $3$
$C_{1222}$ $C_{12221}$ $3$
$C_{12222}$ $3$
$C_{12223}$ $2$
$C_{1223}$ $C_{12231}$ $3$
$C_{12232}$ $4$
$C_{12233}$ $3$
$C_{1231}$ $C_{12311}$ $2$
$C_{12312}$ $3$
$C_{12313}$ $3$
$C_{1232}$ $C_{12321}$ $3$
$C_{12322}$ $3$
$C_{12323}$ $2$
$C_{1233}$ $C_{12331}$ $3$
$C_{1311}$ $C_{13111}$ $3$
$C_{13112}$ $3$
$C_{13113}$ $2$
$C_{13121}$ $C_{13121}$ $3$
$C_{1313}$ $C_{13131}$ $3$
$C_{13132}$ $3$
$C_{13133}$ $2$
$C_{1321}$ $C_{13211}$ $3$
$C_{13212}$ $3$
$C_{13213}$ $2$
$C_{1322}$ $C_{13221}$ $3$
$C_{13222}$ $3$
$C_{13223}$ $2$
$C_{1323}$ $C_{13231}$ $3$
$C_{1331}$ $C_{13311}$ $4$
[1]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[2]

Min Hu, Tao Li, Xingwu Chen. Bi-center problem and Hopf cyclicity of a Cubic Liénard system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 401-414. doi: 10.3934/dcdsb.2019187

[3]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[4]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[5]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[6]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[7]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[8]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[9]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

[10]

Jackson Itikawa, Jaume Llibre, Ana Cristina Mereu, Regilene Oliveira. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3259-3272. doi: 10.3934/dcdsb.2017136

[11]

Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111

[12]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[13]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[14]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[15]

Salomón Rebollo-Perdomo, Claudio Vidal. Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4189-4202. doi: 10.3934/dcds.2018182

[16]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[17]

Jaume Llibre, Clàudia Valls. Hopf bifurcation for some analytic differential systems in $\R^3$ via averaging theory. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 779-790. doi: 10.3934/dcds.2011.30.779

[18]

Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249

[19]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[20]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (27)
  • HTML views (9)
  • Cited by (1)

Other articles
by authors

[Back to Top]