• Previous Article
    Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixed-mode oscillations
  • DCDS-B Home
  • This Issue
  • Next Article
    Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems
December  2017, 22(10): 3967-4002. doi: 10.3934/dcdsb.2017204

Wild oscillations in a nonlinear neuron model with resets: (Ⅰ) Bursting, spike-adding and chaos

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, USA

2. 

The Mathematical Neuroscience Team, CIRB-Collége de France, (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL), Paris, France, Inria Paris, Mycenae Team, Paris, France

3. 

Faculty of Appl. Phys. and Math., Gdańsk University of Technology, Gdańsk, Poland

4. 

Department of Mathematics, Brandeis University, Waltham MA 02454, USA

5. 

Laboratoire de Mathématiques et Modélisation d'Évry (LaMME), CNRS UMR 8071, Université d'Évry-Val-d'Essonne, France

* Corresponding author: justyna.signerska@pg.edu.pl

Received  November 2016 Revised  June 2017 Published  August 2017

Fund Project: J. E. Rubin was partly supported by US National Science Foundation awards DMS 1312508 and 1612913. J. Signerska-Rynkowska was supported by Polish National Science Centre grant 2014/15/B/ST1/01710

In a series of two papers, we investigate the mechanisms by which complex oscillations are generated in a class of nonlinear dynamical systems with resets modeling the voltage and adaptation of neurons. This first paper presents mathematical analysis showing that the system can support bursts of any period as a function of model parameters, and that these are organized in a period-incrementing structure. In continuous dynamical systems with resets, such structures are complex to analyze. In the present context, we use the fact that bursting patterns correspond to periodic orbits of the adaptation map that governs the sequence of values of the adaptation variable at the resets. Using a slow-fast approach, we show that this map converges towards a piecewise linear discontinuous map whose orbits are exactly characterized. That map shows a period-incrementing structure with instantaneous transitions. We show that the period-incrementing structure persists for the full system with non-constant adaptation, but the transitions are more complex. We investigate the presence of chaos at the transitions.

Citation: Jonathan E. Rubin, Justyna Signerska-Rynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅰ) Bursting, spike-adding and chaos. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3967-4002. doi: 10.3934/dcdsb.2017204
References:
[1]

B. Aulbach and B. Kieninger, On three definitions of chaos, Nonlinear Dyn. Syst. Theory, 1 (2001), 23-37. Google Scholar

[2]

J. BanksJ. BrooksG. CairnsG. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334. doi: 10.2307/2324899. Google Scholar

[3]

I. Belykh, E. de Lange and M. Hasler, Synchronization of bursting neurons: What matters in the network topology, Phys. Rev. Lett. , 94 (2005), 188101. doi: 10.1103/PhysRevLett.94.188101. Google Scholar

[4]

L. S. Block and W. A. Coppel, Dynamics in One Dimension, Springer-Verlag, 1992. doi: 10.1007/BFb0084762. Google Scholar

[5]

A. M. Blokh and M. Yu. Lyubich, Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. École Norm. Sup., 24 (1991), 545-573. doi: 10.24033/asens.1636. Google Scholar

[6]

R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity, J. Neurophysiol., 94 (2005), 3637-3642. doi: 10.1152/jn.00686.2005. Google Scholar

[7]

H. BruinG. KellerT. Nowicki and S. van Strien, Wild Cantor attractors exist, Ann. of Math., 143 (1996), 97-130. doi: 10.2307/2118654. Google Scholar

[8]

N. Brunel and M. Van Rossum, Lapicque's 1907 paper: From frogs to integrate-and-fire, Biol. Cybernet., 97 (2007), 337-339. doi: 10.1007/s00422-007-0190-0. Google Scholar

[9]

P. Collet and J-P. Eckmann, Concepts and Results in Chaotic Dynamics: A Short Course, Theoretical and Mathematical Physics, Springer-Verlag, Berlin, 2006. Google Scholar

[10]

S. Coombes and C. Bressloff, Bursting: The Genesis of Rhythm in the Nervous System, World Scientific, 2005. doi: 10.1142/5944. Google Scholar

[11]

P. de Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points, J. Differential Equations, 215 (2005), 225-267. doi: 10.1016/j.jde.2005.01.004. Google Scholar

[12]

W. de Melo and S. van Strien, One-dimensional dynamics: The Schwarzian derivative and beyond, Bull. Amer. Math. Soc. (N.S.), 18 (1988), 159-162. doi: 10.1090/S0273-0979-1988-15633-9. Google Scholar

[13]

——, One-Dimensional Dynamics, Results in Mathematics and Related Areas (3), Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-78043-1. Google Scholar

[14]

M. Desroche, T. J. Kaper and M. Krupa, Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster, Chaos, 23 (2013), 046106, 13 pp. doi: 10.1063/1.4827026. Google Scholar

[15]

A. DestexheD. Contreras and M. Steriade, Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells, J. Neurophysiol., 79 (1998), 999-1016. Google Scholar

[16]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Westview Press, 2003. Google Scholar

[17]

F. Dumortier and R. H. Roussarie, Canard cycles and center manifolds Memoirs of the American Mathematical Soc. , 121 (1996), x+100 pp. doi: 10.1090/memo/0577. Google Scholar

[18]

E. FoxallR. EdwardsS. Ibrahim and P. van den Driessche, A contraction argument for two-dimensional spiking neuron models, SIAM J. Appl. Dyn. Syst., 11 (2012), 540-566. doi: 10.1137/10081811X. Google Scholar

[19]

A. GranadosF. Clément and M. Krupa, Border collision bifurcations of stroboscopic maps in periodically driven spiking models, SIAM J. Appl. Dyn. Syst., 13 (2014), 1387-1416. doi: 10.1137/13094637X. Google Scholar

[20]

J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys., 70 (1979), 133-160. doi: 10.1007/BF01982351. Google Scholar

[21]

P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. doi: 10.1137/1.9780898719222. Google Scholar

[22]

L. D. Iasemidis and J. C. Sackellares, Review: Chaos theory and epilepsy, The Neuroscientist, 2 (1996), 118-126. doi: 10.1177/107385849600200213. Google Scholar

[23]

B. IbarzJ. M. Casado and M. A. F. Sanjuán, Map-based models in neuronal dynamics, Phys. Rep., 501 (2011), 1-74. doi: 10.1016/j.physrep.2010.12.003. Google Scholar

[24]

E.M. Izhikevich, Neural excitability, spiking, and bursting, Internat, J. Bifur. Chaos Appl., 10 (2000), 1171-1266. doi: 10.1142/S0218127400000840. Google Scholar

[25]

——, Simple model of spiking neurons, IEEE Trans. Neural Netw. , 14 (2003), 1569-1572.Google Scholar

[26]

——, Which model to use for cortical spiking neurons?, IEEE Trans. Neural Netw. , 15 (2004), 1063-1070.Google Scholar

[27]

——, Dynamical Systems in Neuroscience: The Geometry of Excitability And Bursting, MIT Press, 2007. Google Scholar

[28]

——, Bursting, Scholarpedia, 2006.Google Scholar

[29]

E. M. Izhikevich and G. M. Edelman, Large-scale model of mammalian thalamocortical systems, Proc. Natl. Acad. Sci. USA, 105 (2007), 3593-3598. doi: 10.1073/pnas.0712231105. Google Scholar

[30]

E. M. IzhikevichN. S. DesaiE. C. Walcott and F. C. Hoppensteadt, Bursts as a unit of neural information: Selective communication via resonance, Trends in neurosciences, 26 (2003), 161-167. doi: 10.1016/S0166-2236(03)00034-1. Google Scholar

[31]

B. JiaH. GuL. Li and X. Zhao, Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns, Cognitive Neurodynamics, 6 (2012), 89-106. doi: 10.1007/s11571-011-9184-7. Google Scholar

[32]

N. D JimenezS. MihalasR. BrownE. Niebur and J. Rubin, Locally contractive dynamics in generalized integrate-and-fire neurons, SIAM J. Appl. Dyn. Syst., 12 (2013), 1474-1514. doi: 10.1137/120900435. Google Scholar

[33]

R. JolivetR. KobayashiA. RauchR. NaudS. Shinomoto and W. Gerstner, A benchmark test for a quantitative assessment of simple neuron models, J. Neurosci. Meth, 169 (2008), 417-424. doi: 10.1016/j.jneumeth.2007.11.006. Google Scholar

[34]

M. Juan, L. Yu-Ye, W. Chun-Ling, Y. Ming-Hao, G. Hua-Guang, Q. Shi-Xian and R. Wei, Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable Chin. Phys. B, 19 (2010), 080513. doi: 10.1088/1674-1056/19/8/080513. Google Scholar

[35]

A. Kepecs and J. Lisman, Information encoding and computation with spikes and bursts, Network: Comp. Neural Syst., 14 (2003), 103-118. doi: 10.1080/net.14.1.103.118. Google Scholar

[36]

A. KepecsX.-J. Wang and J. Lisman, Bursting neurons signal input slope, J. Neurosci., 22 (2002), 9053-9062. Google Scholar

[37]

L. Lapicque, Recherches quantitatifs sur l'excitation des nerfs traitee comme une polarisation, J. Physiol. Paris, 9 (1907), 620-635. Google Scholar

[38]

E. Lee and D. Terman, Uniqueness and stability of periodic bursting solutions, J. Differential Equations, 158 (1999), 48-78. doi: 10.1016/S0022-0396(99)80018-7. Google Scholar

[39]

M. Levi, A period-adding phenomenon, SIAM J. Appl. Math., 50 (1990), 943-955. doi: 10.1137/0150058. Google Scholar

[40]

T.-Y. LiM. MisiurewiczG. Pianigiani and J. A. Yorke, No division implies chaos, Trans. Amer. Math. Soc., 273 (1982), 191-199. doi: 10.1090/S0002-9947-1982-0664037-3. Google Scholar

[41]

B. G. Lindsey, I. A. Rybak and J. C. Smith, Computational models and emergent properties of respiratory neural networks, Compr. Physiol. (2012). doi: 10.1002/cphy.c110016. Google Scholar

[42]

E. ManicaG. Medvedev and J. E. Rubin, First return maps for the dynamics of synaptically coupled conditional bursters, Biol. Cybern., 103 (2010), 87-104. doi: 10.1007/s00422-010-0399-1. Google Scholar

[43]

E. Marder, Motor pattern generation, Curr. Opin. Neurobiol., 10 (2000), 691-698. doi: 10.1016/S0959-4388(00)00157-4. Google Scholar

[44]

E. Marder and D. Bucher, Central pattern generators and the control of rhythmic movements, Curr. Biol., 11 (2001), R986-R996. doi: 10.1016/S0960-9822(01)00581-4. Google Scholar

[45]

G. S. Medvedev, Reduction of a model of an excitable cell to a one-dimensional map, Phys. D, 202 (2005), 37-59. doi: 10.1016/j.physd.2005.01.021. Google Scholar

[46]

H. G. MeijerT. L. EissaB. KiewietJ. F. NeumanC. A. SchevonR. G. EmersonR. R. GoodmanG. M. McKhannC. J. MarcuccilliA. K. TrybaJ. D. CowanS. A. van Gils and W. van Drongelen, Modeling focal epileptic activity in the Wilson-Cowan model with depolarization block, J. Math. Neurosci., 5 (2015), Art. 7, 17 pp. doi: 10.1186/s13408-015-0019-4. Google Scholar

[47]

J. Milnor, On the concept of attractor, Comm. Math. Phys., 99 (1985), 177-195. doi: 10.1007/BF01212280. Google Scholar

[48]

J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical Systems. Lecture Notes in Math. , Springer, Berlin, 1342 (1988), 465-563.Google Scholar

[49]

M. Misiurewicz, Horseshoes for continuous mappings of the interval, in Dynamical Systems, C. Marchioro, ed. , C. I. M. E. Summer Schools, Springer, (1980), 125-135.Google Scholar

[50]

R. NaudN. MacilleC. Clopath and W. Gerstner, Firing patterns in the adaptive exponential integrate-and-fire model, Biol. Cybern., 99 (2008), 335-347. doi: 10.1007/s00422-008-0264-7. Google Scholar

[51]

A.-M. M OswaldM. J. ChacronB. DoironJ. Bastian and L. Maler, Parallel processing of sensory input by bursts and isolated spikes, J. Neurosci., 24 (2004), 4351-4362. doi: 10.1523/JNEUROSCI.0459-04.2004. Google Scholar

[52]

K. PakdamanJ.-F. VibertE. Boussard and N. Azmy, Single neuron with recurrent excitation: Effect of the transmission delay, Neur. Netw., 9 (1996), 797-818. doi: 10.1016/0893-6080(95)00097-6. Google Scholar

[53]

D. A. Prince, Neurophysiology of epilepsy, Ann. Rev. Neurosci., 1 (1978), 395-415. doi: 10.1146/annurev.ne.01.030178.002143. Google Scholar

[54]

S. R. Pring and C. J. Budd, The dynamics of regularized discontinuous maps with applications to impacting systems, SIAM J. Appl. Dyn. Syst., 9 (2010), 188-219. doi: 10.1137/080743123. Google Scholar

[55]

J. Rinzel, A formal classification of bursting mechanisms in excitable systems, in Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Springer, 71 (1987), 267-281Google Scholar

[56]

J. Rinzel and W. C. Troy, A one-variable map analysis of bursting in the BelousovZhabotinskii reaction, in Oscillations in Mathematical Biology (Garden City, N. Y. , 1982), Lecture Notes in Biomath. , 51, Springer, Berlin, 1983, 1-23Google Scholar

[57]

J. E. RubinJ. Signerska-RynkowskaJ. Touboul and A. Vidal, Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixed-mode oscillations, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 4003-4039. Google Scholar

[58]

J. E. RubinC. C. McIntyreR. S. Turner and T. Wichmann, Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects, Europ. J. Neurosci., 36 (2012), 2213-2228. doi: 10.1111/j.1460-9568.2012.08108.x. Google Scholar

[59]

N. F. RulkovI. Timofeev and M. Bazhenov, Oscillations in large-scale cortical networks: Map-based model, J. Comput. Neurosci., 17 (2004), 203-223. doi: 10.1023/B:JCNS.0000037683.55688.7e. Google Scholar

[60]

N. F. Rulkov, Modeling of spiking-bursting neural behavior using two-dimensional map, Phys. Rev. E, 65 (2002), 041922, 9pp. doi: 10.1103/PhysRevE.65.041922. Google Scholar

[61]

I. Samengo and M. A. Montemurro, Conversion of phase information into a spike-count code by bursting neurons PLoS One, 5 (2010), e9669. doi: 10.1371/journal.pone.0009669. Google Scholar

[62]

S. J. SchiffK. JergerD. H. DuongT. ChangM. L. Spano and W. L. Ditto, Controlling chaos in the brain, Nature, 370 (1994), 615-620. doi: 10.1038/370615a0. Google Scholar

[63]

W. Schultz, Predictive reward signal of dopamine neurons, J. Neurophysiol., 80 (1998), 1-27. Google Scholar

[64]

S. Silverman, On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math., 22 (1992), 353-375. doi: 10.1216/rmjm/1181072815. Google Scholar

[65]

J. TabakM. TomaiuoloA. E. Gonzalez-IglesiasL. S. Milescu and R. Bertram, Fast-activating voltage-and calcium-dependent potassium (BK) conductance promotes bursting in pituitary cells: a dynamic clamp study, J. Neurosci., 31 (2011), 16855-16863. Google Scholar

[66]

H. Thunberg, Periodicity versus chaos in one-dimensional dynamics, SIAM Rev., 43 (2001), 3-30. doi: 10.1137/S0036144500376649. Google Scholar

[67]

J. Touboul, Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons, SIAM J. Appl. Math., 68 (2008), 1045-1079. doi: 10.1137/070687268. Google Scholar

[68]

——, Importance of the cutoff value in the quadratic adaptive integrate-and-fire model, Neural Comput. , 21 (2009), 2114-2122.Google Scholar

[69]

J. Touboul and R. Brette, Dynamics and bifurcations of the adaptive exponential integrate-and-fire model, Biol. Cybern., 99 (2008), 319-334. doi: 10.1007/s00422-008-0267-4. Google Scholar

[70]

——, Spiking dynamics of bidimensional integrate-and-fire neurons, SIAM J. Appl. Dyn. Syst. , 8 (2009), 1462-1506.Google Scholar

[71]

S. van Strien, Hyperbolicity and invariant measures for general C2 interval maps satisfying the Misiurewicz condition, Comm. Math. Phys., 128 (1990), 437-495. doi: 10.1007/BF02096868. Google Scholar

show all references

References:
[1]

B. Aulbach and B. Kieninger, On three definitions of chaos, Nonlinear Dyn. Syst. Theory, 1 (2001), 23-37. Google Scholar

[2]

J. BanksJ. BrooksG. CairnsG. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334. doi: 10.2307/2324899. Google Scholar

[3]

I. Belykh, E. de Lange and M. Hasler, Synchronization of bursting neurons: What matters in the network topology, Phys. Rev. Lett. , 94 (2005), 188101. doi: 10.1103/PhysRevLett.94.188101. Google Scholar

[4]

L. S. Block and W. A. Coppel, Dynamics in One Dimension, Springer-Verlag, 1992. doi: 10.1007/BFb0084762. Google Scholar

[5]

A. M. Blokh and M. Yu. Lyubich, Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. École Norm. Sup., 24 (1991), 545-573. doi: 10.24033/asens.1636. Google Scholar

[6]

R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity, J. Neurophysiol., 94 (2005), 3637-3642. doi: 10.1152/jn.00686.2005. Google Scholar

[7]

H. BruinG. KellerT. Nowicki and S. van Strien, Wild Cantor attractors exist, Ann. of Math., 143 (1996), 97-130. doi: 10.2307/2118654. Google Scholar

[8]

N. Brunel and M. Van Rossum, Lapicque's 1907 paper: From frogs to integrate-and-fire, Biol. Cybernet., 97 (2007), 337-339. doi: 10.1007/s00422-007-0190-0. Google Scholar

[9]

P. Collet and J-P. Eckmann, Concepts and Results in Chaotic Dynamics: A Short Course, Theoretical and Mathematical Physics, Springer-Verlag, Berlin, 2006. Google Scholar

[10]

S. Coombes and C. Bressloff, Bursting: The Genesis of Rhythm in the Nervous System, World Scientific, 2005. doi: 10.1142/5944. Google Scholar

[11]

P. de Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points, J. Differential Equations, 215 (2005), 225-267. doi: 10.1016/j.jde.2005.01.004. Google Scholar

[12]

W. de Melo and S. van Strien, One-dimensional dynamics: The Schwarzian derivative and beyond, Bull. Amer. Math. Soc. (N.S.), 18 (1988), 159-162. doi: 10.1090/S0273-0979-1988-15633-9. Google Scholar

[13]

——, One-Dimensional Dynamics, Results in Mathematics and Related Areas (3), Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-78043-1. Google Scholar

[14]

M. Desroche, T. J. Kaper and M. Krupa, Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster, Chaos, 23 (2013), 046106, 13 pp. doi: 10.1063/1.4827026. Google Scholar

[15]

A. DestexheD. Contreras and M. Steriade, Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells, J. Neurophysiol., 79 (1998), 999-1016. Google Scholar

[16]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Westview Press, 2003. Google Scholar

[17]

F. Dumortier and R. H. Roussarie, Canard cycles and center manifolds Memoirs of the American Mathematical Soc. , 121 (1996), x+100 pp. doi: 10.1090/memo/0577. Google Scholar

[18]

E. FoxallR. EdwardsS. Ibrahim and P. van den Driessche, A contraction argument for two-dimensional spiking neuron models, SIAM J. Appl. Dyn. Syst., 11 (2012), 540-566. doi: 10.1137/10081811X. Google Scholar

[19]

A. GranadosF. Clément and M. Krupa, Border collision bifurcations of stroboscopic maps in periodically driven spiking models, SIAM J. Appl. Dyn. Syst., 13 (2014), 1387-1416. doi: 10.1137/13094637X. Google Scholar

[20]

J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys., 70 (1979), 133-160. doi: 10.1007/BF01982351. Google Scholar

[21]

P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. doi: 10.1137/1.9780898719222. Google Scholar

[22]

L. D. Iasemidis and J. C. Sackellares, Review: Chaos theory and epilepsy, The Neuroscientist, 2 (1996), 118-126. doi: 10.1177/107385849600200213. Google Scholar

[23]

B. IbarzJ. M. Casado and M. A. F. Sanjuán, Map-based models in neuronal dynamics, Phys. Rep., 501 (2011), 1-74. doi: 10.1016/j.physrep.2010.12.003. Google Scholar

[24]

E.M. Izhikevich, Neural excitability, spiking, and bursting, Internat, J. Bifur. Chaos Appl., 10 (2000), 1171-1266. doi: 10.1142/S0218127400000840. Google Scholar

[25]

——, Simple model of spiking neurons, IEEE Trans. Neural Netw. , 14 (2003), 1569-1572.Google Scholar

[26]

——, Which model to use for cortical spiking neurons?, IEEE Trans. Neural Netw. , 15 (2004), 1063-1070.Google Scholar

[27]

——, Dynamical Systems in Neuroscience: The Geometry of Excitability And Bursting, MIT Press, 2007. Google Scholar

[28]

——, Bursting, Scholarpedia, 2006.Google Scholar

[29]

E. M. Izhikevich and G. M. Edelman, Large-scale model of mammalian thalamocortical systems, Proc. Natl. Acad. Sci. USA, 105 (2007), 3593-3598. doi: 10.1073/pnas.0712231105. Google Scholar

[30]

E. M. IzhikevichN. S. DesaiE. C. Walcott and F. C. Hoppensteadt, Bursts as a unit of neural information: Selective communication via resonance, Trends in neurosciences, 26 (2003), 161-167. doi: 10.1016/S0166-2236(03)00034-1. Google Scholar

[31]

B. JiaH. GuL. Li and X. Zhao, Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns, Cognitive Neurodynamics, 6 (2012), 89-106. doi: 10.1007/s11571-011-9184-7. Google Scholar

[32]

N. D JimenezS. MihalasR. BrownE. Niebur and J. Rubin, Locally contractive dynamics in generalized integrate-and-fire neurons, SIAM J. Appl. Dyn. Syst., 12 (2013), 1474-1514. doi: 10.1137/120900435. Google Scholar

[33]

R. JolivetR. KobayashiA. RauchR. NaudS. Shinomoto and W. Gerstner, A benchmark test for a quantitative assessment of simple neuron models, J. Neurosci. Meth, 169 (2008), 417-424. doi: 10.1016/j.jneumeth.2007.11.006. Google Scholar

[34]

M. Juan, L. Yu-Ye, W. Chun-Ling, Y. Ming-Hao, G. Hua-Guang, Q. Shi-Xian and R. Wei, Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable Chin. Phys. B, 19 (2010), 080513. doi: 10.1088/1674-1056/19/8/080513. Google Scholar

[35]

A. Kepecs and J. Lisman, Information encoding and computation with spikes and bursts, Network: Comp. Neural Syst., 14 (2003), 103-118. doi: 10.1080/net.14.1.103.118. Google Scholar

[36]

A. KepecsX.-J. Wang and J. Lisman, Bursting neurons signal input slope, J. Neurosci., 22 (2002), 9053-9062. Google Scholar

[37]

L. Lapicque, Recherches quantitatifs sur l'excitation des nerfs traitee comme une polarisation, J. Physiol. Paris, 9 (1907), 620-635. Google Scholar

[38]

E. Lee and D. Terman, Uniqueness and stability of periodic bursting solutions, J. Differential Equations, 158 (1999), 48-78. doi: 10.1016/S0022-0396(99)80018-7. Google Scholar

[39]

M. Levi, A period-adding phenomenon, SIAM J. Appl. Math., 50 (1990), 943-955. doi: 10.1137/0150058. Google Scholar

[40]

T.-Y. LiM. MisiurewiczG. Pianigiani and J. A. Yorke, No division implies chaos, Trans. Amer. Math. Soc., 273 (1982), 191-199. doi: 10.1090/S0002-9947-1982-0664037-3. Google Scholar

[41]

B. G. Lindsey, I. A. Rybak and J. C. Smith, Computational models and emergent properties of respiratory neural networks, Compr. Physiol. (2012). doi: 10.1002/cphy.c110016. Google Scholar

[42]

E. ManicaG. Medvedev and J. E. Rubin, First return maps for the dynamics of synaptically coupled conditional bursters, Biol. Cybern., 103 (2010), 87-104. doi: 10.1007/s00422-010-0399-1. Google Scholar

[43]

E. Marder, Motor pattern generation, Curr. Opin. Neurobiol., 10 (2000), 691-698. doi: 10.1016/S0959-4388(00)00157-4. Google Scholar

[44]

E. Marder and D. Bucher, Central pattern generators and the control of rhythmic movements, Curr. Biol., 11 (2001), R986-R996. doi: 10.1016/S0960-9822(01)00581-4. Google Scholar

[45]

G. S. Medvedev, Reduction of a model of an excitable cell to a one-dimensional map, Phys. D, 202 (2005), 37-59. doi: 10.1016/j.physd.2005.01.021. Google Scholar

[46]

H. G. MeijerT. L. EissaB. KiewietJ. F. NeumanC. A. SchevonR. G. EmersonR. R. GoodmanG. M. McKhannC. J. MarcuccilliA. K. TrybaJ. D. CowanS. A. van Gils and W. van Drongelen, Modeling focal epileptic activity in the Wilson-Cowan model with depolarization block, J. Math. Neurosci., 5 (2015), Art. 7, 17 pp. doi: 10.1186/s13408-015-0019-4. Google Scholar

[47]

J. Milnor, On the concept of attractor, Comm. Math. Phys., 99 (1985), 177-195. doi: 10.1007/BF01212280. Google Scholar

[48]

J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical Systems. Lecture Notes in Math. , Springer, Berlin, 1342 (1988), 465-563.Google Scholar

[49]

M. Misiurewicz, Horseshoes for continuous mappings of the interval, in Dynamical Systems, C. Marchioro, ed. , C. I. M. E. Summer Schools, Springer, (1980), 125-135.Google Scholar

[50]

R. NaudN. MacilleC. Clopath and W. Gerstner, Firing patterns in the adaptive exponential integrate-and-fire model, Biol. Cybern., 99 (2008), 335-347. doi: 10.1007/s00422-008-0264-7. Google Scholar

[51]

A.-M. M OswaldM. J. ChacronB. DoironJ. Bastian and L. Maler, Parallel processing of sensory input by bursts and isolated spikes, J. Neurosci., 24 (2004), 4351-4362. doi: 10.1523/JNEUROSCI.0459-04.2004. Google Scholar

[52]

K. PakdamanJ.-F. VibertE. Boussard and N. Azmy, Single neuron with recurrent excitation: Effect of the transmission delay, Neur. Netw., 9 (1996), 797-818. doi: 10.1016/0893-6080(95)00097-6. Google Scholar

[53]

D. A. Prince, Neurophysiology of epilepsy, Ann. Rev. Neurosci., 1 (1978), 395-415. doi: 10.1146/annurev.ne.01.030178.002143. Google Scholar

[54]

S. R. Pring and C. J. Budd, The dynamics of regularized discontinuous maps with applications to impacting systems, SIAM J. Appl. Dyn. Syst., 9 (2010), 188-219. doi: 10.1137/080743123. Google Scholar

[55]

J. Rinzel, A formal classification of bursting mechanisms in excitable systems, in Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Springer, 71 (1987), 267-281Google Scholar

[56]

J. Rinzel and W. C. Troy, A one-variable map analysis of bursting in the BelousovZhabotinskii reaction, in Oscillations in Mathematical Biology (Garden City, N. Y. , 1982), Lecture Notes in Biomath. , 51, Springer, Berlin, 1983, 1-23Google Scholar

[57]

J. E. RubinJ. Signerska-RynkowskaJ. Touboul and A. Vidal, Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixed-mode oscillations, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 4003-4039. Google Scholar

[58]

J. E. RubinC. C. McIntyreR. S. Turner and T. Wichmann, Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects, Europ. J. Neurosci., 36 (2012), 2213-2228. doi: 10.1111/j.1460-9568.2012.08108.x. Google Scholar

[59]

N. F. RulkovI. Timofeev and M. Bazhenov, Oscillations in large-scale cortical networks: Map-based model, J. Comput. Neurosci., 17 (2004), 203-223. doi: 10.1023/B:JCNS.0000037683.55688.7e. Google Scholar

[60]

N. F. Rulkov, Modeling of spiking-bursting neural behavior using two-dimensional map, Phys. Rev. E, 65 (2002), 041922, 9pp. doi: 10.1103/PhysRevE.65.041922. Google Scholar

[61]

I. Samengo and M. A. Montemurro, Conversion of phase information into a spike-count code by bursting neurons PLoS One, 5 (2010), e9669. doi: 10.1371/journal.pone.0009669. Google Scholar

[62]

S. J. SchiffK. JergerD. H. DuongT. ChangM. L. Spano and W. L. Ditto, Controlling chaos in the brain, Nature, 370 (1994), 615-620. doi: 10.1038/370615a0. Google Scholar

[63]

W. Schultz, Predictive reward signal of dopamine neurons, J. Neurophysiol., 80 (1998), 1-27. Google Scholar

[64]

S. Silverman, On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math., 22 (1992), 353-375. doi: 10.1216/rmjm/1181072815. Google Scholar

[65]

J. TabakM. TomaiuoloA. E. Gonzalez-IglesiasL. S. Milescu and R. Bertram, Fast-activating voltage-and calcium-dependent potassium (BK) conductance promotes bursting in pituitary cells: a dynamic clamp study, J. Neurosci., 31 (2011), 16855-16863. Google Scholar

[66]

H. Thunberg, Periodicity versus chaos in one-dimensional dynamics, SIAM Rev., 43 (2001), 3-30. doi: 10.1137/S0036144500376649. Google Scholar

[67]

J. Touboul, Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons, SIAM J. Appl. Math., 68 (2008), 1045-1079. doi: 10.1137/070687268. Google Scholar

[68]

——, Importance of the cutoff value in the quadratic adaptive integrate-and-fire model, Neural Comput. , 21 (2009), 2114-2122.Google Scholar

[69]

J. Touboul and R. Brette, Dynamics and bifurcations of the adaptive exponential integrate-and-fire model, Biol. Cybern., 99 (2008), 319-334. doi: 10.1007/s00422-008-0267-4. Google Scholar

[70]

——, Spiking dynamics of bidimensional integrate-and-fire neurons, SIAM J. Appl. Dyn. Syst. , 8 (2009), 1462-1506.Google Scholar

[71]

S. van Strien, Hyperbolicity and invariant measures for general C2 interval maps satisfying the Misiurewicz condition, Comm. Math. Phys., 128 (1990), 437-495. doi: 10.1007/BF02096868. Google Scholar

Figure 1.  Bifurcations of the adaptive exponential model and its saddle-node (brown), Hopf (green), saddle homoclinic (purple) and Bogdanov-Takens (BT) bifurcations in the $(I, b)$ parameter plane. The analytical curve separating regions of unstable focus and unstable node is added in dashed blue. Typical phase planes in the different regions of interest are depicted as smaller insets. They feature the nullclines (dashed black) and the stable manifold (red).
Figure 2.  The period-incrementing structure of $\Phi$ as $v_{R}$ is varied for the quartic model (system (1) with parameters (5)). Blue points: 100 iterates of the map $\Phi$ after a transient of $100$ spikes (most points are overlapping and we only see the periodic points appearing, except in the chaotic region) as a function of $v_{R}$
Figure 3.  An example of the adaptation map for small $\varepsilon$, annotated with notation used throughout the paper. Left: attractive (green, $\mathcal{C_{\varepsilon}^-}$) and repulsive (red, $\mathcal{C_{\varepsilon}^+}$) slow manifolds of the subthreshold system as perturbations of the critical manifold $\mathcal{C}$ (black curve). As stated in the main text (in order from largest to smallest $w$): $w_{\varepsilon}^+$ denotes the $w$-coordinate of the upper intersection point of $\mathcal{C_{\varepsilon}^+}$ with $\{v = v_R\}$, $w^*$ is the $w$-coordinate of $\mathcal{C} \cap \{ v=v_R \}$, $(v_F, w_F)$ denotes the minimum point of $\mathcal{C}$, $w_{\varepsilon}^-$ is the $w$-coordinate of $\mathcal{C_{\varepsilon}^-} \cap \{ v = v_F \}$, $w^{**}$ denotes the $w$-coordinate of the intersection of the $w$-nullcline (black line) with $\{ v = v_R \}$. Right: Associated adaption map $\Phi_{\varepsilon}$. The grey region corresponds to the interval $[w^*, \xi]$, where $\xi$ is defined as the largest value such that $\Phi'(\xi) = -1$ (see section 3), while $p_{\varepsilon} := \lim_{w\to\infty} \Phi_{\varepsilon}(w)$.
Figure 4.  Bifurcation structure and periodic solutions of $\Phi_0$. Left: bifurcation diagram of $\Phi_{0}$ as a function of $w^{*}$ illustrating the period-incrementing structure as described in Proposition 2. Blue lines represent the stable periodic orbits of the system. Middle: bifurcation diagram of $\Phi_{0}$ as a function of $v_{R}$ in the case of the quartic model with standard parameters (5). The red curve represents the value of $w^{*}$ for each $v_R$. Right: plot of $\Phi_{0}$ and the associated period-4 orbit for $v_{R}=1.3$ (green line in the middle plot).
Figure 5.  Illustration for the proof of Proposition 3 with $k=4$, together with the orbits of $w^*$ (blue) and $\tilde{w}$ (green) (see the statement of Proposition 3).
Figure 6.  Maps $\Phi_{\varepsilon}$ and bifurcation sequences for the standard quartic model (5) and various values of $\varepsilon$. For $\varepsilon=0.05$, the diagram is very close to the bifurcation diagram of $\Phi_{0}$ depicted in Fig. 4 (we superimposed the plot of the map $F(v)+I$ in orange to emphasize this similarity). As $\varepsilon$ is increased, the map $\Phi$ slowly deviates from $\Phi_{0}$; the associated bifurcation diagrams conserve the overall period-incrementing structure, but with larger transition regimes characterized by the presence of chaos. We also note that as $v_{R}$ increases, the bifurcation structure becomes more similar to the singular limit.
Figure 7.  Orbits of $\Phi$ for the standard quartic model (5) with $\varepsilon=0.4$, for values of $v_{R}$ spanning the period-incrementing transition between bursts with 2 and 3 spikes. A period-2 orbit undergoes a period-doubling giving rise to a period-4 orbit, which itself loses stability, yielding chaotic spiking, before the system stabilizes on a period-3 orbit.
Figure 8.  Metric chaos in the quartic integrate-and-fire neuron with standard parameters (5) and $\varepsilon=0.4$. (A) Adaptation map in the case where $\Phi^{5}(w^{*})=w^{f}$, a fixed point, found by fine-tuning the value of the reset voltage (here, $v_{R}=1.2226$). The sequence of iterates is chaotic (strictly positive Lyapunov exponent (30) with for instance $\kappa>6$ for all $w$ tested). (B) Iterates of $\Phi$ in the same setting yield a complex chaotic sequence. The $15\, 000$ final iterates are depicted, together with the obtained distribution of points.
[1]

Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933

[2]

Claudio Bonanno, Carlo Carminati, Stefano Isola, Giulio Tiozzo. Dynamics of continued fractions and kneading sequences of unimodal maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1313-1332. doi: 10.3934/dcds.2013.33.1313

[3]

Xu Zhang, Guanrong Chen. Polynomial maps with hidden complex dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2941-2954. doi: 10.3934/dcdsb.2018293

[4]

John Erik Fornæss. Infinite dimensional complex dynamics: Quasiconjugacies, localization and quantum chaos. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 51-60. doi: 10.3934/dcds.2000.6.51

[5]

Jianquan Li, Yicang Zhou, Jianhong Wu, Zhien Ma. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 161-173. doi: 10.3934/dcdsb.2007.8.161

[6]

Antonio Ambrosetti, Massimiliano Berti. Homoclinics and complex dynamics in slowly oscillating systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 393-403. doi: 10.3934/dcds.1998.4.393

[7]

Yu Yang, Dongmei Xiao. Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 195-211. doi: 10.3934/dcdsb.2010.13.195

[8]

El Houcein El Abdalaoui, Sylvain Bonnot, Ali Messaoudi, Olivier Sester. On the Fibonacci complex dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2449-2471. doi: 10.3934/dcds.2016.36.2449

[9]

Zhipeng Qiu, Huaiping Zhu. Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2703-2728. doi: 10.3934/dcdsb.2016069

[10]

Yangyou Pan, Yuzhen Bai, Xiang Zhang. Dynamics of locally linearizable complex two dimensional cubic Hamiltonian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1761-1774. doi: 10.3934/dcdss.2019116

[11]

Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511

[12]

Carlos Correia Ramos, Nuno Martins, Paulo R. Pinto. Escape dynamics for interval maps. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6241-6260. doi: 10.3934/dcds.2019272

[13]

Mikhail Lyubich. Forty years of unimodal dynamics: On the occasion of Artur Avila winning the Brin Prize. Journal of Modern Dynamics, 2012, 6 (2) : 183-203. doi: 10.3934/jmd.2012.6.183

[14]

Jianghong Bao. Complex dynamics in the segmented disc dynamo. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3301-3314. doi: 10.3934/dcdsb.2016098

[15]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

[16]

Mohammadreza Molaei. Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds. Electronic Research Announcements, 2018, 25: 8-15. doi: 10.3934/era.2018.25.002

[17]

Sebastian Hage-Packhäuser, Michael Dellnitz. Stabilization via symmetry switching in hybrid dynamical systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 239-263. doi: 10.3934/dcdsb.2011.16.239

[18]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[19]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[20]

Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (32)
  • HTML views (7)
  • Cited by (0)

[Back to Top]