March  2018, 23(2): 525-541. doi: 10.3934/dcdsb.2017206

Asymptotic behaviour of the solutions to a virus dynamics model with diffusion

1. 

Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan

2. 

Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan

Received  February 2017 Revised  May 2017 Published  December 2017

Asymptotic behaviour of the solutions to a basic virus dynamics model is discussed. We consider the population of uninfected cells, infected cells, and virus particles. Diffusion effect is incorporated there. First, the Lyapunov function effective to the spatially homogeneous part (ODE model without diffusion) admits the $L^1$ boundedness of the orbit. Then the pre-compactness of this orbit in the space of continuous functions is derived by the semigroup estimates. Consequently, from the invariant principle, if the basic reproductive number $R_0$ is less than or equal to 1, each orbit converges to the disease free spatially homogeneous equilibrium, and if $R_0>1$, each orbit converges to the infected spatially homogeneous equilibrium, which means that the simple diffusion does not affect the asymptotic behaviour of the solutions.

Citation: Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206
References:
[1]

S. BonhoefferR. M. MayG. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976.   Google Scholar

[2]

J. A. CarrilloA. JüngelP. A. MarkowichG. Toscani and A. Unterriter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133 (2001), 1-82.   Google Scholar

[3]

C. L. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998.  Google Scholar

[4]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[5]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Springer-Verlag, New York, 1981. Google Scholar

[6]

A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.  doi: 10.1016/j.bulm.2004.02.001.  Google Scholar

[7]

E. LatosT. Suzuki and Y. Yamada, Transient and asymptotic dynamics of a prey-predator system with diffusion, Math. Methods Appl. Sci., 35 (2012), 1101-1109.  doi: 10.1002/mma.2524.  Google Scholar

[8]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.   Google Scholar

[9]

J. PrüssR. Zacher and R. Schnaubelt, Global asymptotic stability of equilibria in models for virus dynamics, Math. Model. Nat. Phenom., 3 (2008), 126-142.   Google Scholar

[10]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, Springer-Verlag, New York, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[11]

G. D. Smith, Numerical Solution of Partial Differential Equations–Finite Difference Methods, 3rd edition, Oxford University press, Oxford, 1985.  Google Scholar

[12]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[13]

H. Tanabe, Equations of Evolution, Pitman, London, 1979.  Google Scholar

[14]

J. WangJ. Yang and T. Kuniya, Dynamics of a PDE viral infection model incorporating cell-to-cell transmission, J. Math. Anal. Appl., 444 (2016), 1542-1564.   Google Scholar

[15]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer-Verlag, New York, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

show all references

References:
[1]

S. BonhoefferR. M. MayG. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976.   Google Scholar

[2]

J. A. CarrilloA. JüngelP. A. MarkowichG. Toscani and A. Unterriter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133 (2001), 1-82.   Google Scholar

[3]

C. L. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998.  Google Scholar

[4]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[5]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Springer-Verlag, New York, 1981. Google Scholar

[6]

A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.  doi: 10.1016/j.bulm.2004.02.001.  Google Scholar

[7]

E. LatosT. Suzuki and Y. Yamada, Transient and asymptotic dynamics of a prey-predator system with diffusion, Math. Methods Appl. Sci., 35 (2012), 1101-1109.  doi: 10.1002/mma.2524.  Google Scholar

[8]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.   Google Scholar

[9]

J. PrüssR. Zacher and R. Schnaubelt, Global asymptotic stability of equilibria in models for virus dynamics, Math. Model. Nat. Phenom., 3 (2008), 126-142.   Google Scholar

[10]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, Springer-Verlag, New York, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[11]

G. D. Smith, Numerical Solution of Partial Differential Equations–Finite Difference Methods, 3rd edition, Oxford University press, Oxford, 1985.  Google Scholar

[12]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[13]

H. Tanabe, Equations of Evolution, Pitman, London, 1979.  Google Scholar

[14]

J. WangJ. Yang and T. Kuniya, Dynamics of a PDE viral infection model incorporating cell-to-cell transmission, J. Math. Anal. Appl., 444 (2016), 1542-1564.   Google Scholar

[15]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer-Verlag, New York, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

Figure 1.  The graphs of $u_i$'s: In the case $R_0 <1$. (a) $u_1$. (b) $u_2$. (c) $u_3$. The oscillation of the initial functions decays with the passage of time, and the solutions tend to the spatially homogeneous disease free steady states.
Figure 2.  The graphs of $u_i$'s: In the case $R_0>1$. (a, d) $u_1$. (b, e) $u_2$. (c, f) $u_3$. The view angle of the graphs in the upper row is the same as that of Figure 1.
Figure 3.  The graphs of $u_3$: In the case $R_0>1$. We divide Figure 2(c) into three parts: (a) $0\leqq t \leqq 2.1$, (b) $2.1\leqq t \leqq 6.0$, and (c) $6.0 \leqq t \leqq 15.0$.
[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[3]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[4]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[5]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[8]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[9]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[11]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[12]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[13]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[14]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (209)
  • HTML views (422)
  • Cited by (0)

Other articles
by authors

[Back to Top]