\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Continuous and discrete one dimensional autonomous fractional ODEs

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • In this paper, we study 1D autonomous fractional ODEs $D_c^{γ}u=f(u), 0< γ <1$, where $u: [0,∞) \to \mathbb{R}$ is the unknown function and $D_c^{γ}$ is the generalized Caputo derivative introduced by Li and Liu (arXiv:1612.05103). Based on the existence and uniqueness theorem and regularity results in previous work, we show the monotonicity of solutions to the autonomous fractional ODEs and several versions of comparison principles. We also perform a detailed discussion of the asymptotic behavior for $f(u)=Au^p$. In particular, based on an Osgood type blow-up criteria, we find relatively sharp bounds of the blow-up time in the case $A>0, p>1$. These bounds indicate that as the memory effect becomes stronger ($γ \to 0$), if the initial value is big, the blow-up time tends to zero while if the initial value is small, the blow-up time tends to infinity. In the case $A<0, p>1$, we show that the solution decays to zero more slowly compared with the usual derivative. Lastly, we show several comparison principles and Grönwall inequalities for discretized equations, and perform some numerical simulations to confirm our analysis.

    Mathematics Subject Classification: Primary: 34A08.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Solution curves for $f(u)=Au^2$ with $u(0)=u_0$. (a). $A=1, u_0=0.12 ,\gamma=0.6$; (b). $A=1, u_0=1.2, \gamma=0.6$

    Figure 2.  Blow-up time versus $\gamma$. The red solid line shows the numerical results of the blow-up time. The blue dotted line is the estimated upper bound and the green dashed line is the lower bound, provided by Theorem 5.2. (a). $A=1, u_0=0.12$; (b). $A=1, u_0=1.2$

  •   M. Allen , L. Caffarelli  and  A. Vasseur , A parabolic problem with a fractional time derivative, Archive for Rational Mechanics and Analysis, 221 (2016) , 603-630.  doi: 10.1007/s00205-016-0969-z.
      N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals, Courier Corporation, 1975.
      H. Brunner  and  Z. W. Yang , Blow-up behavior of Hammerstein-type Volterra integral equations, J. Integral Equations Appl, 24 (2012) , 487-512.  doi: 10.1216/JIE-2012-24-4-487.
      M. Caputo , Linear models of dissipation whose Q is almost frequency independent-Ⅱ, Geophysical Journal International, 13 (1967) , 529-539. 
      P. Clément  and  J. A. Nohel , Abstract linear and nonlinear Volterra equations preserving positivity, SIAM Journal on Mathematical Analysis, 10 (1979) , 365-388.  doi: 10.1137/0510035.
      P. Clément  and  J. A. Nohel , Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels, SIAM Journal on Mathematical Analysis, 12 (1981) , 514-535.  doi: 10.1137/0512045.
      K. Diethelm, The Analysis of Fractional Differential Equations: An Application-oriented Exposition Using Differential Operators of Caputo Type, Springer, 2010. doi: 10.1007/978-3-642-14574-2.
      K. Diethelm  and  N. J. Ford , Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications, 265 (2002) , 229-248.  doi: 10.1006/jmaa.2000.7194.
      J. Dixon  and  S. McKee , Weakly singular discrete Grönwall inequalities, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 66 (1986) , 535-544. 
      C. S. Drapaca  and  S. Sivaloganathan , A fractional model of continuum mechanics, Journal of Elasticity, 107 (2012) , 105-123.  doi: 10.1007/s10659-011-9346-1.
      R. Gorenflo and F. Mainardi, Fractional Calculus, Springer, 1997.
      H. J. Haubold, A. M. Mathai and R. K. Saxena, Mittag-Leffler functions and their applications, Journal of Applied Mathematics, 2011 (2001), Art. ID 298628, 51 pp. doi: 10.1155/2011/298628.
      A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204 (2006), xvi+523 pp, URL http://www.sciencedirect.com/science/article/pii/S0304020806800010.
      L. Li and J. -G. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs, arXiv preprint, arXiv: 1612. 05103v2.
      Y. Lin , X. Li  and  C. Xu , Finite difference/spectral approximations for the fractional cable equation, Mathematics of Computation, 80 (2011) , 1369-1396.  doi: 10.1090/S0025-5718-2010-02438-X.
      Y. Lin  and  C. Xu , Finite difference/spectral approximations for the time-fractional diffusion equation, Journal of Computational Physics, 225 (2007) , 1533-1552.  doi: 10.1016/j.jcp.2007.02.001.
      F. Mainardi  and  R. Gorenflo , On Mittag-Leffler-type functions in fractional evolution processes, Journal of Computational and Applied Mathematics, 118 (2000) , 283-299.  doi: 10.1016/S0377-0427(00)00294-6.
      F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, arXiv preprint, arXiv: 0704.0320.
      R. K. Miller  and  A. Feldstein , Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM Journal on Mathematical Analysis, 2 (1971) , 242-258.  doi: 10.1137/0502022.
      J. D. Munkhammar , Riemann-Liouville fractional derivatives and the Taylor-Riemann series, UUDM project report, 7 (2004) , 1-18. 
      C. A. Roberts , D. G. Lasseigne  and  W. E. Olmstead , Volterra equations which model explosion in a diffusive medium, J. Integral Equations Appl., 5 (1993) , 531-546.  doi: 10.1216/jiea/1181075776.
      C. A. Roberts  and  W. E. Olmstead , Growth rates for blow-up solutions of nonlinear Volterra equations, Quarterly of Applied Mathematics, 54 (1996) , 153-159.  doi: 10.1090/qam/1373844.
      M. Taylor, Remarks on fractional diffusion equations, Preprint.
      D. G. Weis , Asymptotic behavior of some nonlinear Volterra integral equations, Journal of Mathematical Analysis and Applications, 49 (1975) , 59-87.  doi: 10.1016/0022-247X(75)90162-6.
      D. V. Widder, Laplace Transform (PMS-6), Princeton University Press, 2015.
      G. M. Zaslavsky , Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371 (2002) , 461-580.  doi: 10.1016/S0370-1573(02)00331-9.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(1051) PDF downloads(299) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return