
-
Previous Article
Self-similar solutions of fragmentation equations revisited
- DCDS-B Home
- This Issue
-
Next Article
Preface
Models of the population playing the rock-paper-scissors game
Instytut Matematyki i Informatyki, Uniwersytet Opolski, ul. Oleska 48, Poland |
We consider discrete dynamical systems coming from the models of evolution of populations playing rock-paper-scissors game. Asymptotic behaviour of trajectories of these systems is described, occurrence of the Neimark-Sacker bifurcation and nonexistence of time averages are proved.
References:
[1] |
K. Barański and M. Misiurewicz,
Omega-limit set for the Stein-Ulam spiral map, Topology Proceedings, 36 (2010), 145-172.
|
[2] |
A. Gaunersdorfer,
Time averages for heteroclinic attractors, SIAM J. Math. Anal., 52 (1992), 1476-1489.
doi: 10.1137/0152085. |
[3] |
J. Guckenheimer, Bifurcations of dynamical systems, C. I. M. E Summer School Bressanone 1978, Progr. Math., Birkh'auser, Boston, Mass., 8 (1980), 115-231. |
[4] |
G. N. Hardy,
Mendelian proportions in a mixed population, Science, 28 (1908), 49-50.
|
[5] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.
doi: 10.1017/CBO9781139173179.![]() ![]() ![]() |
[6] |
Yu I. Lyubich,
Basic concepts and theorem of the evolutionary genetics of free populations, Russian Math. Surveys, 26 (1971), 51-116.
|
[7] |
M. T. Menzel, P. R. Stein and S. M. Ulam, Quadratic Transformations. Part 1, in Los Alamos Scientific Laboratory report LA-2305,1959. |
[8] |
F. Takens,
Heteroclinic attractors: Time averages and moduli of topological conjugacy, Bol. Soc. Bras. Mat., 25 (1994), 107-120.
doi: 10.1007/BF01232938. |
[9] |
F. Takens,
Orbits with historic behaviour, or non-existence of averages, Nonlinearity, 21 (2008), T33-T36.
doi: 10.1088/0951-7715/21/3/T02. |
[10] |
S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, New York-London, Interscience Publishers, 1960. |
[11] |
S. S. Vallander,
The limiting behavior of the sequence of iterates of certain quadratic transformations, Dokl. Akad. Nauk SSSR, 202 (1972), 515-517.
|
[12] |
W. Weinberg, Über den Nachweis der Vererbung beim Menschen, Jahreshefte Verein f. Vaterl. Naturk., in Würtembergh, 64 (1908), 368-383. |
[13] |
D. Whitley,
Discrete dynamical systems in dimensions one and two, Bull. London Math. Soc., 15 (1983), 177-217.
doi: 10.1112/blms/15.3.177. |
[14] |
M. I. Zaharevič,
On the behavior of trajectories and the ergodic hypothesis for quadratic mappings of a simplex, Russian Math. Surveys, 33 (1978), 265-266.
|
show all references
References:
[1] |
K. Barański and M. Misiurewicz,
Omega-limit set for the Stein-Ulam spiral map, Topology Proceedings, 36 (2010), 145-172.
|
[2] |
A. Gaunersdorfer,
Time averages for heteroclinic attractors, SIAM J. Math. Anal., 52 (1992), 1476-1489.
doi: 10.1137/0152085. |
[3] |
J. Guckenheimer, Bifurcations of dynamical systems, C. I. M. E Summer School Bressanone 1978, Progr. Math., Birkh'auser, Boston, Mass., 8 (1980), 115-231. |
[4] |
G. N. Hardy,
Mendelian proportions in a mixed population, Science, 28 (1908), 49-50.
|
[5] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.
doi: 10.1017/CBO9781139173179.![]() ![]() ![]() |
[6] |
Yu I. Lyubich,
Basic concepts and theorem of the evolutionary genetics of free populations, Russian Math. Surveys, 26 (1971), 51-116.
|
[7] |
M. T. Menzel, P. R. Stein and S. M. Ulam, Quadratic Transformations. Part 1, in Los Alamos Scientific Laboratory report LA-2305,1959. |
[8] |
F. Takens,
Heteroclinic attractors: Time averages and moduli of topological conjugacy, Bol. Soc. Bras. Mat., 25 (1994), 107-120.
doi: 10.1007/BF01232938. |
[9] |
F. Takens,
Orbits with historic behaviour, or non-existence of averages, Nonlinearity, 21 (2008), T33-T36.
doi: 10.1088/0951-7715/21/3/T02. |
[10] |
S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, New York-London, Interscience Publishers, 1960. |
[11] |
S. S. Vallander,
The limiting behavior of the sequence of iterates of certain quadratic transformations, Dokl. Akad. Nauk SSSR, 202 (1972), 515-517.
|
[12] |
W. Weinberg, Über den Nachweis der Vererbung beim Menschen, Jahreshefte Verein f. Vaterl. Naturk., in Würtembergh, 64 (1908), 368-383. |
[13] |
D. Whitley,
Discrete dynamical systems in dimensions one and two, Bull. London Math. Soc., 15 (1983), 177-217.
doi: 10.1112/blms/15.3.177. |
[14] |
M. I. Zaharevič,
On the behavior of trajectories and the ergodic hypothesis for quadratic mappings of a simplex, Russian Math. Surveys, 33 (1978), 265-266.
|


[1] |
Peter Bednarik, Josef Hofbauer. Discretized best-response dynamics for the Rock-Paper-Scissors game. Journal of Dynamics and Games, 2017, 4 (1) : 75-86. doi: 10.3934/jdg.2017005 |
[2] |
Gunter Neumann, Stefan Schuster. Modeling the rock - scissors - paper game between bacteriocin producing bacteria by Lotka-Volterra equations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 207-228. doi: 10.3934/dcdsb.2007.8.207 |
[3] |
Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305 |
[4] |
Alexei Pokrovskii, Oleg Rasskazov, Daniela Visetti. Homoclinic trajectories and chaotic behaviour in a piecewise linear oscillator. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 943-970. doi: 10.3934/dcdsb.2007.8.943 |
[5] |
Gabriela Planas, Eduardo Hernández. Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1245-1258. doi: 10.3934/dcds.2008.21.1245 |
[6] |
Juan C. Jara, Felipe Rivero. Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4127-4137. doi: 10.3934/dcds.2014.34.4127 |
[7] |
Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277 |
[8] |
Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019 |
[9] |
Jacek Banasiak, Proscovia Namayanja. Asymptotic behaviour of flows on reducible networks. Networks and Heterogeneous Media, 2014, 9 (2) : 197-216. doi: 10.3934/nhm.2014.9.197 |
[10] |
Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks and Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279 |
[11] |
Minvydas Ragulskis, Zenonas Navickas. Hash function construction based on time average moiré. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 1007-1020. doi: 10.3934/dcdsb.2007.8.1007 |
[12] |
Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations and Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1 |
[13] |
Xiaoli Wang, Peter Kloeden, Meihua Yang. Asymptotic behaviour of a neural field lattice model with delays. Electronic Research Archive, 2020, 28 (2) : 1037-1048. doi: 10.3934/era.2020056 |
[14] |
Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393 |
[15] |
Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1553-1565. doi: 10.3934/dcdss.2020088 |
[16] |
Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206 |
[17] |
María Anguiano, P.E. Kloeden. Asymptotic behaviour of the nonautonomous SIR equations with diffusion. Communications on Pure and Applied Analysis, 2014, 13 (1) : 157-173. doi: 10.3934/cpaa.2014.13.157 |
[18] |
Jorge Ferreira, Mauro De Lima Santos. Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Communications on Pure and Applied Analysis, 2003, 2 (4) : 511-520. doi: 10.3934/cpaa.2003.2.511 |
[19] |
Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119 |
[20] |
Francesca R. Guarguaglini. Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks and Heterogeneous Media, 2018, 13 (1) : 47-67. doi: 10.3934/nhm.2018003 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]