|
M. S. Aronna
, J. F. Bonnans
, A. V. Dmitruk
and P. A. Lotito
, Quadratic orderconditions for bang-singular extremals, Numerical Algebra, Control and Optimization, 2 (2012)
, 511-546.
doi: 10.3934/naco.2012.2.511.
|
|
M. Assellaou, O. Bokanowski, A. Desilles and H. Zidani, A Hamilton-Jacobi-Bellman Approach for the Optimal Control of an Abort Landing Problem 55th IEEE Conference on Decision and Control, 2016.
doi: 10.1109/CDC.2016.7798815.
|
|
M. Bardi and I. Capuzzo-Dolcetta,
Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations Systems and Control: Foundations and Applications. Birkhäuser, Boston, 1997.
doi: 10.1007/978-0-8176-4755-1.
|
|
M. H. A. Biswas
, L. T. Paiva
and M. d. R. de Pinho
, A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014)
, 761-784.
doi: 10.3934/mbe.2014.11.761.
|
|
O. Bokanowski
, A. Briani
and H. Zidani
, Minumum time control problems for non autonomous differential equations, Systems and Control Letters, 58 (2009)
, 742-746.
doi: 10.1016/j.sysconle.2009.08.003.
|
|
O. Bokanowski, A. Désilles, H. Zidani and J. Zhao,
ROC-HJ software "Reachability, Optimal Control, and Hamilton-Jacobi equations, http://uma.ensta-paristech.fr/soft/ROC-HJ(2016).
|
|
O. Bokanowski
, N. Forcadel
and H. Zidani
, Reachability and minimal times for state constrained nonlinear problems without any controllability assumption, SIAM Journal on Control and Optimization, 48 (2010)
, 4292-4316.
doi: 10.1137/090762075.
|
|
H. Bonnel
and Y. C. Kaya
, Optimization over the efficient set of multi-objective convex optimal control problems, J. Optim. Theory Appl., 147 (2010)
, 93-112.
doi: 10.1007/s10957-010-9709-y.
|
|
C. Büskens, Optimierungsmethoden und Sensitivitätsanalyse Für Optimale Steuerprozesse mit Steuer-und Zustands-Beschränkungen Dissertation, Institut für Numerische Mathematik, Universität Münster, Germany, 1998.
|
|
C. Büskens
and H. Maurer
, SQP-methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real-time control, Journal of Computational and Applied Mathematics, 120 (2000)
, 85-108.
doi: 10.1016/S0377-0427(00)00305-8.
|
|
C. Büskens and H. Maurer, Sensitivity analysis and real-time optimization of parametric nonlinear programming problems, in: Online Optimization of Large Scale Systems (M. Grötschel, S. O. Krumke, J. Rambau, eds.), Springer-Verlag, Berlin, (2001), 3-16.
|
|
C. Büskens and H. Maurer, Sensitivity analysis and real--time control of parametric optimal control problems using nonlinear programming methods, in: Online Optimization of Large Scale Systems (M. Grötschel, S. O. Krumke, J. Rambau, eds.), Springer-erlag, Berlin, (2001), 57-68.
|
|
M. d. R. de Pinho
and F. N. Nogueira
, On application of optimal control to SEIR normalized models: Pros and cons, Mathematical Biosciences and Engineering, 14 (2017)
, 111-126.
doi: 10.3934/mbe.2017008.
|
|
G. Eichfelder,
Adaptive Scalarization Methods in Multiobjective Optimization Springer, Berlin, Heidelberg, 2008.
doi: 10.1007/978-3-540-79159-1.
|
|
M. Falcone and R. Ferretti,
Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations SIAM, Philadelphia, PA, 2014.
|
|
A. V. Fiacco,
Introduction to Sensitivity and Stability Analysis Academic Press, New York, London, 1983.
|
|
R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Brooks-Cole Publishing Company, Duxbury Press, 1993.
|
|
L. Grüne and J. Pannek,
Nonlinear Model Predictive Control. Theory and Algorithms Springer, 2011.
doi: 10.1007/978-0-85729-501-9.
|
|
M. R. Hestenes,
Calculus of Variations and Optimal Control Theory John Wiley & Sons, Inc., New York-London-Sydney, 1966.
|
|
H. W. Hethcote
, The mathematics of infectious diseases, SIAM Review, 42 (2000)
, 599-653.
doi: 10.1137/S0036144500371907.
|
|
H. W. Hethcote
, The basic epidemiology models: Models, expressions for $ R_0$, parameter estimation, and applications, In:Mathematical Understanding of Infectious Disease Dynamics (S. Ma and Y. Xia, Eds.), 16 (2009)
, 1-61.
doi: 10.1142/9789812834836_0001.
|
|
Y. C. Kaya
and H. Maurer
, A numerical method for nonconvex multi-objective optimal control problems, Computational Optimization and Applications, 57 (2014)
, 685-702.
doi: 10.1007/s10589-013-9603-2.
|
|
A. J. Krener
, The high order Maximal Principle and its application to singular extremals, SIAM J.on Control and Optimization, 15 (1977)
, 256-293.
doi: 10.1137/0315019.
|
|
U. Ledzewicz
and H. Schättler
, On optimal singular control for a general SIR-model with vaccination and treatment, Discrete and Continuous Dynamical Systems, 2 (2011)
, 981-990.
|
|
H. Maurer
and M. d. R. de Pinho
, Optimal control of epdimiological SEIR models with $ L^1$ objective and control-state constraints, Pacific Journal of Optimization, 12 (2016)
, 415-436.
|
|
H. Maurer
, C. Büskens
, J.-H. R. Kim
and Y. Kaya
, Optimization methods for the verification of second-order sufficient conditions for bang-bang controls, Optimal Control Methods and Applications, 26 (2005)
, 129-156.
doi: 10.1002/oca.756.
|
|
R. M. Neilan
and S. Lenhart
, An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010)
, 67-81.
|
|
N. P. Osmolovskii and H. Maurer,
Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control Advances in Design and Control, 24. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012.
doi: 10.1137/1.9781611972368.
|
|
L. S. Pontryagin, V. G. Boltyanski, R. V. Gramkrelidze and E. F. Miscenko,
The Mathematical Theory of Optimal Processes (in Russian), Fitzmatgiz, Moscow; English translation: Pergamon Press, New York, 1964.
|
|
C.-W. Shu
and S. Osher
, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, 77 (1988)
, 439-471.
doi: 10.1016/0021-9991(88)90177-5.
|
|
A. Wächter
and L. T. Biegler
, On the implementation of a primal-dual interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006)
, 25-57.
doi: 10.1007/s10107-004-0559-y.
|