January  2018, 23(1): 123-144. doi: 10.3934/dcdsb.2018008

Asymptotic properties of delayed matrix exponential functions via Lambert function

Brno University of Technology, CEITEC -Central European Institute of Technology, Purkyňova 656/123,612 00 Brno, Czech Republic

* Corresponding author: Z. Svoboda

Received  September 2016 Published  January 2018

In the case of first-order linear systems with single constant delay and with constant matrix, the application of the well-known "step by step" method (when ordinary differential equations with delay are solved) has recently been formalized using a special type matrix, called delayed matrix exponential. This matrix function is defined on the intervals $(k-1)τ≤q t<kτ$, $k=0,1,\dots$ (where $τ>0$ is a delay) as different matrix polynomials, and is continuous at nodes $t=kτ$. In the paper, the asymptotic properties of delayed matrix exponential are studied for $k\to∞$ and it is, e.g., proved that the sequence of values of a delayed matrix exponential at nodes is approximately represented by a geometric progression. A constant matrix has been found such that its matrix exponential is the "quotient" factor that depends on the principal branch of the Lambert function. Applications of the results obtained are given as well.

Citation: Josef Diblík, Zdeněk Svoboda. Asymptotic properties of delayed matrix exponential functions via Lambert function. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 123-144. doi: 10.3934/dcdsb.2018008
References:
[1]

N. H. Abel, Beweis eines Ausdruckes, von welchen die Binomial-Formel ein einzelner Fall ist, J. Reine Angew. Math., 1 (1826), 159-160.  doi: 10.1515/crll.1826.1.159.  Google Scholar

[2]

A. BoichukJ. DiblíkD. Khusainov and M. Růžičková, Fredholm's boundary-value problems for differential systems with a single delay, Nonlinear Anal., 72 (2010), 2251-2258.  doi: 10.1016/j.na.2009.10.025.  Google Scholar

[3]

R.M. CorlessG.H. GonnetD.E.G. HareD. J. Jeffrey and D.E. Knuth, On the Lambert W Function, Adv. Comp. Math., 5 (1996), 329-359.  doi: 10.1007/BF02124750.  Google Scholar

[4]

F. R. Gantmacher, The Theory of Matrices, Volume 1, AMS Chelsea Publishing, 1998.  Google Scholar

[5]

D. Ya. Khusainov and G.V. Shuklin, Linear autonomous time-delay system with permutation matrices solving, Stud. Univ. Žilina, Math. Ser., 17 (2003), 101-108.   Google Scholar

[6]

D.Ya. Khusainov and G.V. Shuklin, On relative controllability in systems with pure delay, Int. Appl. Mech., 41 (2005), 210-221.  doi: 10.1007/s10778-005-0079-3.  Google Scholar

[7]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[8]

J. H. Lambert, Observationes variae in mathesin puram, Acta Helvetica, physicomathematico-anatomico-botanico-medica, Band Ⅲ, (1758), 128{168. Google Scholar

[9]

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis, Birkhäuser Boston, Inc., Boston, MA, 1997. doi: 10.1007/978-0-8176-8136-4.  Google Scholar

show all references

References:
[1]

N. H. Abel, Beweis eines Ausdruckes, von welchen die Binomial-Formel ein einzelner Fall ist, J. Reine Angew. Math., 1 (1826), 159-160.  doi: 10.1515/crll.1826.1.159.  Google Scholar

[2]

A. BoichukJ. DiblíkD. Khusainov and M. Růžičková, Fredholm's boundary-value problems for differential systems with a single delay, Nonlinear Anal., 72 (2010), 2251-2258.  doi: 10.1016/j.na.2009.10.025.  Google Scholar

[3]

R.M. CorlessG.H. GonnetD.E.G. HareD. J. Jeffrey and D.E. Knuth, On the Lambert W Function, Adv. Comp. Math., 5 (1996), 329-359.  doi: 10.1007/BF02124750.  Google Scholar

[4]

F. R. Gantmacher, The Theory of Matrices, Volume 1, AMS Chelsea Publishing, 1998.  Google Scholar

[5]

D. Ya. Khusainov and G.V. Shuklin, Linear autonomous time-delay system with permutation matrices solving, Stud. Univ. Žilina, Math. Ser., 17 (2003), 101-108.   Google Scholar

[6]

D.Ya. Khusainov and G.V. Shuklin, On relative controllability in systems with pure delay, Int. Appl. Mech., 41 (2005), 210-221.  doi: 10.1007/s10778-005-0079-3.  Google Scholar

[7]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[8]

J. H. Lambert, Observationes variae in mathesin puram, Acta Helvetica, physicomathematico-anatomico-botanico-medica, Band Ⅲ, (1758), 128{168. Google Scholar

[9]

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis, Birkhäuser Boston, Inc., Boston, MA, 1997. doi: 10.1007/978-0-8176-8136-4.  Google Scholar

Figure 1.  The curve ${\mathrm{Re}\,W_0(z)}=0$
Figure 2.  Detailed eigenvalue domains
[1]

Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355

[2]

Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735

[3]

Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1477-1498. doi: 10.3934/mbe.2017077

[4]

Weijiu Liu. Asymptotic behavior of solutions of time-delayed Burgers' equation. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 47-56. doi: 10.3934/dcdsb.2002.2.47

[5]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[6]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[7]

Rod Cross, Victor Kozyakin. Double exponential instability of triangular arbitrage systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 349-376. doi: 10.3934/dcdsb.2013.18.349

[8]

J. Húska, Peter Poláčik. Exponential separation and principal Floquet bundles for linear parabolic equations on $R^N$. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 81-113. doi: 10.3934/dcds.2008.20.81

[9]

Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305

[10]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[11]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[12]

Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3023-3042. doi: 10.3934/dcdsb.2017161

[13]

Bai-Ni Guo, Feng Qi. Properties and applications of a function involving exponential functions. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1231-1249. doi: 10.3934/cpaa.2009.8.1231

[14]

Yongge Tian. A survey on rank and inertia optimization problems of the matrix-valued function $A + BXB^{*}$. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 289-326. doi: 10.3934/naco.2015.5.289

[15]

Armin Eftekhari, Michael B. Wakin, Ping Li, Paul G. Constantine. Randomized learning of the second-moment matrix of a smooth function. Foundations of Data Science, 2019, 1 (3) : 329-387. doi: 10.3934/fods.2019015

[16]

Artur Avila, Thomas Roblin. Uniform exponential growth for some SL(2, R) matrix products. Journal of Modern Dynamics, 2009, 3 (4) : 549-554. doi: 10.3934/jmd.2009.3.549

[17]

J. Húska, Peter Poláčik, M.V. Safonov. Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations. Conference Publications, 2005, 2005 (Special) : 427-435. doi: 10.3934/proc.2005.2005.427

[18]

Janusz Mierczyński, Sylvia Novo, Rafael Obaya. Principal Floquet subspaces and exponential separations of type Ⅱ with applications to random delay differential equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6163-6193. doi: 10.3934/dcds.2018265

[19]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

[20]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (38)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]