January  2018, 23(1): 219-238. doi: 10.3934/dcdsb.2018015

Periodic solutions for nonlinear nonmonotone evolution inclusions

1. 

Jagiellonian University, Faculty of Mathematics and Computer Science, ul. Łojasiewicza 6, 30-348 Kraków, Poland

2. 

National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece

* Corresponding author: Leszek Gasiński

Received  August 2016 Revised  June 2017 Published  January 2018

Fund Project: The first author was supported by the National Science Center of Poland under Project no. 2015/19/B/ST1/01169

We study periodic problems for nonlinear evolution inclusions defined in the framework of an evolution triple $(X,H,X^*)$ of spaces. The operator $A(t,x)$ representing the spatial differential operator is not in general monotone. The reaction (source) term $F(t,x)$ is defined on $[0,b]× X$ with values in $2^{X^*}\setminus\{\emptyset\}$. Using elliptic regularization, we approximate the problem, solve the approximation problem and pass to the limit. We also present some applications to periodic parabolic inclusions.

Citation: Leszek Gasiński, Nikolaos S. Papageorgiou. Periodic solutions for nonlinear nonmonotone evolution inclusions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 219-238. doi: 10.3934/dcdsb.2018015
References:
[1]

H. Amann, Periodic solutions of semilinear parabolic equations, Nonlinear Analysis (Collection of Papers in Honor of Erich H. Rothe), (1978), 1-29. Google Scholar

[2]

R. Bader and N. S. Papageorgiou, On the problem of periodic evolution inclusions of the subdifferential type, Z. Anal. Anwendungen, 21 (2002), 963-984. doi: 10.4171/ZAA/1120. Google Scholar

[3]

R. I. Becker, Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl., 82 (1981), 33-48. doi: 10.1016/0022-247X(81)90223-7. Google Scholar

[4]

F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), 1100-1103. doi: 10.1073/pnas.53.5.1100. Google Scholar

[5]

R. Caşcaval and I. I. Vrabie, Existence of periodic solutions for a class of nonlinear evolution equations, Rev. Mat. Univ. Complut. Madrid, 7 (1994), 325-338. Google Scholar

[6]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129. doi: 10.1016/0022-247X(81)90095-0. Google Scholar

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis Second edition. Classics in Applied Mathematics, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. Google Scholar

[8]

A. Defranceschi, Asymptotic analysis of boundary value problems for quasi-linear monotone operators, Asymptotic Anal., 3 (1990), 221-247. Google Scholar

[9]

L. Gasiński, Existence result for hyperbolic hemivariational inequalities, Nonlinear Anal., 47 (2001), 681-686. doi: 10.1016/S0362-546X(01)00211-5. Google Scholar

[10]

L. Gasiński, Existence of solutions for hyperbolic hemivariational inequalities, J. Math. Anal. Appl., 276 (2002), 723-746. doi: 10.1016/S0022-247X(02)00431-6. Google Scholar

[11]

L. Gasiński, Evolution hemivariational inequalities with hysteresis, Nonlinear Anal., 57 (2004), 323-340. doi: 10.1016/j.na.2004.02.016. Google Scholar

[12]

L. Gasiński, Evolution hemivariational inequality with hysteresis operator in higher order term, Acta Math. Sin. (Engl. Ser.), 24 (2008), 107-120. doi: 10.1007/s10114-007-0997-6. Google Scholar

[13]

L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006. Google Scholar

[14]

L. Gasiński and N. S. Papageorgiou, Exercises in Analysis. Part 1 Problem Books in Mathematics. Springer, Cham, 2014. Google Scholar

[15]

L. Gasiński and M. Smolka, An existence theorem for wave-type hyperbolic hemivariational inequalities, Math. Nachr., 242 (2002), 79-90. doi: 10.1002/1522-2616(200207)242:1<79::AID-MANA79>3.0.CO;2-S. Google Scholar

[16]

L. Gasiński and M. Smolka, Existence of solutions for wave-type hemivariational inequalities with noncoercive viscosity damping, J. Math. Anal. Appl., 270 (2002), 150-164. doi: 10.1016/S0022-247X(02)00057-4. Google Scholar

[17]

N. Hirano, Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. Amer. Math. Soc., 120 (1994), 185-192. doi: 10.1090/S0002-9939-1994-1174494-8. Google Scholar

[18]

S. Hu and N. S. Papageorgiou, On the existence of periodic solutions for a class of nonlinear evolution inclusions, Boll. Un. Mat. Ital. B (7), 7 (1993), 591-605. Google Scholar

[19]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory Kluwer Academic Publishers, Dordrecht, 1997. doi: 10.1007/978-1-4615-6359-4. Google Scholar

[20]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. Ⅱ. Applications Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-1-4615-4665-8_17. Google Scholar

[21]

P. O. KasyanovV. S. Mel'nik and S. Toscano, Solutions of Cauchy and periodic problems for evolution inclusions with multi-valued $w_{λ_0}$-pseudomonotone maps, J. Differential Equations, 249 (2010), 1258-1287. doi: 10.1016/j.jde.2010.05.008. Google Scholar

[22]

V. Lakshmikantham and N. S. Papageorgiou, Periodic solutions of nonlinear evolution inclusions, J. Comput. Appl. Math., 52 (1994), 277-286. doi: 10.1016/0377-0427(94)90361-1. Google Scholar

[23]

J. Leray and J.-L. Lions, Quelques résulatats de Višik sur les problémes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107. Google Scholar

[24]

J. -L. Lions, Quelques Méthodes de Résolution Des Problémes Aux Limites Non Linéaires Dunod; Gauthier-Villars, Paris, 1969. Google Scholar

[25]

A. Paicu, Periodic solutions for a class of differential inclusions in general Banach spaces, J. Math. Anal. Appl., 337 (2008), 1238-1248. doi: 10.1016/j.jmaa.2007.04.053. Google Scholar

[26]

P. D. Panagiotopoulos, Hemivariational Inequalities. Applications to Mechanics and Engineering Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-51677-1. Google Scholar

[27]

N. S. Papageorgiou and S. Kyritsi, Handbook of Applied Analysis Springer-Verlag, New York, 2009. doi: 10.1007/b120946. Google Scholar

[28]

J. Prüss, Periodic solutions of semilinear evolution equations, Nonlinear Anal., 3 (1979), 601-612. doi: 10.1016/0362-546X(79)90089-0. Google Scholar

[29]

P. SattayathamS. Tangmanee and W. Wei, On periodic solutions of nonlinear evolution equations in Banach spaces, J. Math. Anal. Appl., 276 (2002), 98-108. doi: 10.1016/S0022-247X(02)00378-5. Google Scholar

[30]

N. Shioji, Existence of periodic solutions for nonlinear evolution equations with pseudomonotone operators, Proc. Amer. Math. Soc., 125 (1997), 2921-2929. doi: 10.1090/S0002-9939-97-03984-1. Google Scholar

[31]

I. I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc., 109 (1990), 653-661. doi: 10.1090/S0002-9939-1990-1015686-4. Google Scholar

[32]

X. Xue and Y. Cheng, Existence of periodic solutions of nonlinear evolution inclusions in Banach spaces, Nonlinear Anal. Real World Appl., 11 (2010), 459-471. doi: 10.1016/j.nonrwa.2008.11.020. Google Scholar

[33]

E. Zeidler, Nonlinear Functional Analysis and Its Applications Ⅱ/B. Nonlinear Monotone Operators, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0. Google Scholar

show all references

References:
[1]

H. Amann, Periodic solutions of semilinear parabolic equations, Nonlinear Analysis (Collection of Papers in Honor of Erich H. Rothe), (1978), 1-29. Google Scholar

[2]

R. Bader and N. S. Papageorgiou, On the problem of periodic evolution inclusions of the subdifferential type, Z. Anal. Anwendungen, 21 (2002), 963-984. doi: 10.4171/ZAA/1120. Google Scholar

[3]

R. I. Becker, Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl., 82 (1981), 33-48. doi: 10.1016/0022-247X(81)90223-7. Google Scholar

[4]

F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), 1100-1103. doi: 10.1073/pnas.53.5.1100. Google Scholar

[5]

R. Caşcaval and I. I. Vrabie, Existence of periodic solutions for a class of nonlinear evolution equations, Rev. Mat. Univ. Complut. Madrid, 7 (1994), 325-338. Google Scholar

[6]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129. doi: 10.1016/0022-247X(81)90095-0. Google Scholar

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis Second edition. Classics in Applied Mathematics, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. Google Scholar

[8]

A. Defranceschi, Asymptotic analysis of boundary value problems for quasi-linear monotone operators, Asymptotic Anal., 3 (1990), 221-247. Google Scholar

[9]

L. Gasiński, Existence result for hyperbolic hemivariational inequalities, Nonlinear Anal., 47 (2001), 681-686. doi: 10.1016/S0362-546X(01)00211-5. Google Scholar

[10]

L. Gasiński, Existence of solutions for hyperbolic hemivariational inequalities, J. Math. Anal. Appl., 276 (2002), 723-746. doi: 10.1016/S0022-247X(02)00431-6. Google Scholar

[11]

L. Gasiński, Evolution hemivariational inequalities with hysteresis, Nonlinear Anal., 57 (2004), 323-340. doi: 10.1016/j.na.2004.02.016. Google Scholar

[12]

L. Gasiński, Evolution hemivariational inequality with hysteresis operator in higher order term, Acta Math. Sin. (Engl. Ser.), 24 (2008), 107-120. doi: 10.1007/s10114-007-0997-6. Google Scholar

[13]

L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006. Google Scholar

[14]

L. Gasiński and N. S. Papageorgiou, Exercises in Analysis. Part 1 Problem Books in Mathematics. Springer, Cham, 2014. Google Scholar

[15]

L. Gasiński and M. Smolka, An existence theorem for wave-type hyperbolic hemivariational inequalities, Math. Nachr., 242 (2002), 79-90. doi: 10.1002/1522-2616(200207)242:1<79::AID-MANA79>3.0.CO;2-S. Google Scholar

[16]

L. Gasiński and M. Smolka, Existence of solutions for wave-type hemivariational inequalities with noncoercive viscosity damping, J. Math. Anal. Appl., 270 (2002), 150-164. doi: 10.1016/S0022-247X(02)00057-4. Google Scholar

[17]

N. Hirano, Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. Amer. Math. Soc., 120 (1994), 185-192. doi: 10.1090/S0002-9939-1994-1174494-8. Google Scholar

[18]

S. Hu and N. S. Papageorgiou, On the existence of periodic solutions for a class of nonlinear evolution inclusions, Boll. Un. Mat. Ital. B (7), 7 (1993), 591-605. Google Scholar

[19]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory Kluwer Academic Publishers, Dordrecht, 1997. doi: 10.1007/978-1-4615-6359-4. Google Scholar

[20]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. Ⅱ. Applications Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-1-4615-4665-8_17. Google Scholar

[21]

P. O. KasyanovV. S. Mel'nik and S. Toscano, Solutions of Cauchy and periodic problems for evolution inclusions with multi-valued $w_{λ_0}$-pseudomonotone maps, J. Differential Equations, 249 (2010), 1258-1287. doi: 10.1016/j.jde.2010.05.008. Google Scholar

[22]

V. Lakshmikantham and N. S. Papageorgiou, Periodic solutions of nonlinear evolution inclusions, J. Comput. Appl. Math., 52 (1994), 277-286. doi: 10.1016/0377-0427(94)90361-1. Google Scholar

[23]

J. Leray and J.-L. Lions, Quelques résulatats de Višik sur les problémes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107. Google Scholar

[24]

J. -L. Lions, Quelques Méthodes de Résolution Des Problémes Aux Limites Non Linéaires Dunod; Gauthier-Villars, Paris, 1969. Google Scholar

[25]

A. Paicu, Periodic solutions for a class of differential inclusions in general Banach spaces, J. Math. Anal. Appl., 337 (2008), 1238-1248. doi: 10.1016/j.jmaa.2007.04.053. Google Scholar

[26]

P. D. Panagiotopoulos, Hemivariational Inequalities. Applications to Mechanics and Engineering Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-51677-1. Google Scholar

[27]

N. S. Papageorgiou and S. Kyritsi, Handbook of Applied Analysis Springer-Verlag, New York, 2009. doi: 10.1007/b120946. Google Scholar

[28]

J. Prüss, Periodic solutions of semilinear evolution equations, Nonlinear Anal., 3 (1979), 601-612. doi: 10.1016/0362-546X(79)90089-0. Google Scholar

[29]

P. SattayathamS. Tangmanee and W. Wei, On periodic solutions of nonlinear evolution equations in Banach spaces, J. Math. Anal. Appl., 276 (2002), 98-108. doi: 10.1016/S0022-247X(02)00378-5. Google Scholar

[30]

N. Shioji, Existence of periodic solutions for nonlinear evolution equations with pseudomonotone operators, Proc. Amer. Math. Soc., 125 (1997), 2921-2929. doi: 10.1090/S0002-9939-97-03984-1. Google Scholar

[31]

I. I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc., 109 (1990), 653-661. doi: 10.1090/S0002-9939-1990-1015686-4. Google Scholar

[32]

X. Xue and Y. Cheng, Existence of periodic solutions of nonlinear evolution inclusions in Banach spaces, Nonlinear Anal. Real World Appl., 11 (2010), 459-471. doi: 10.1016/j.nonrwa.2008.11.020. Google Scholar

[33]

E. Zeidler, Nonlinear Functional Analysis and Its Applications Ⅱ/B. Nonlinear Monotone Operators, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0. Google Scholar

[1]

Santiago Cano-Casanova. Coercivity of elliptic mixed boundary value problems in annulus of $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3819-3839. doi: 10.3934/dcds.2012.32.3819

[2]

Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507

[3]

Marita Thomas. Quasistatic damage evolution with spatial $\mathrm{BV}$-regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 235-255. doi: 10.3934/dcdss.2013.6.235

[4]

Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920

[5]

Rong Xiao, Yuying Zhou. Multiple solutions for a class of semilinear elliptic variational inclusion problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 991-1002. doi: 10.3934/jimo.2011.7.991

[6]

Barbara Kaltenbacher, William Rundell. Regularization of a backwards parabolic equation by fractional operators. Inverse Problems & Imaging, 2019, 13 (2) : 401-430. doi: 10.3934/ipi.2019020

[7]

Jacopo De Simoi. On cyclicity-one elliptic islands of the standard map. Journal of Modern Dynamics, 2013, 7 (2) : 153-208. doi: 10.3934/jmd.2013.7.153

[8]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[9]

Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259

[10]

Jordi-Lluís Figueras, Àlex Haro. Triple collisions of invariant bundles. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2069-2082. doi: 10.3934/dcdsb.2013.18.2069

[11]

Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure & Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039

[12]

Lucio Boccardo. Some Dirichlet problems with bad coercivity. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 319-329. doi: 10.3934/dcds.2002.8.319

[13]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[14]

Giuseppe Maria Coclite, Helge Holden, Kenneth H. Karlsen. Wellposedness for a parabolic-elliptic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 659-682. doi: 10.3934/dcds.2005.13.659

[15]

Pierre-A. Vuillermot. On the time evolution of Bernstein processes associated with a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1073-1090. doi: 10.3934/dcdsb.2018142

[16]

Xin Zuo, Chun-Rong Chen, Hong-Zhi Wei. Solution continuity of parametric generalized vector equilibrium problems with strictly pseudomonotone mappings. Journal of Industrial & Management Optimization, 2017, 13 (1) : 477-488. doi: 10.3934/jimo.2016027

[17]

Micol Amar, Virginia De Cicco. Lower semicontinuity for polyconvex integrals without coercivity assumptions. Evolution Equations & Control Theory, 2014, 3 (3) : 363-372. doi: 10.3934/eect.2014.3.363

[18]

Gary Lieberman. Oblique derivative problems for elliptic and parabolic equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2409-2444. doi: 10.3934/cpaa.2013.12.2409

[19]

Luis Alvarez, Jesús Ildefonso Díaz. On the retention of the interfaces in some elliptic and parabolic nonlinear problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 1-17. doi: 10.3934/dcds.2009.25.1

[20]

Len Margolin, Catherine Plesko. Discrete regularization. Evolution Equations & Control Theory, 2019, 8 (1) : 117-137. doi: 10.3934/eect.2019007

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (28)
  • HTML views (63)
  • Cited by (0)

Other articles
by authors

[Back to Top]