We study periodic problems for nonlinear evolution inclusions defined in the framework of an evolution triple $(X,H,X^*)$ of spaces. The operator $A(t,x)$ representing the spatial differential operator is not in general monotone. The reaction (source) term $F(t,x)$ is defined on $[0,b]× X$ with values in $2^{X^*}\setminus\{\emptyset\}$. Using elliptic regularization, we approximate the problem, solve the approximation problem and pass to the limit. We also present some applications to periodic parabolic inclusions.
Citation: |
H. Amann
, Periodic solutions of semilinear parabolic equations, Nonlinear Analysis (Collection of Papers in Honor of Erich H. Rothe), (1978)
, 1-29.
![]() ![]() |
|
R. Bader
and N. S. Papageorgiou
, On the problem of periodic evolution inclusions of the subdifferential type, Z. Anal. Anwendungen, 21 (2002)
, 963-984.
doi: 10.4171/ZAA/1120.![]() ![]() ![]() |
|
R. I. Becker
, Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl., 82 (1981)
, 33-48.
doi: 10.1016/0022-247X(81)90223-7.![]() ![]() ![]() |
|
F. E. Browder
, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A., 53 (1965)
, 1100-1103.
doi: 10.1073/pnas.53.5.1100.![]() ![]() ![]() |
|
R. Caşcaval
and I. I. Vrabie
, Existence of periodic solutions for a class of nonlinear evolution equations, Rev. Mat. Univ. Complut. Madrid, 7 (1994)
, 325-338.
![]() ![]() |
|
K. C. Chang
, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981)
, 102-129.
doi: 10.1016/0022-247X(81)90095-0.![]() ![]() ![]() |
|
F. H. Clarke,
Optimization and Nonsmooth Analysis Second edition. Classics in Applied Mathematics, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.
![]() ![]() |
|
A. Defranceschi
, Asymptotic analysis of boundary value problems for quasi-linear monotone operators, Asymptotic Anal., 3 (1990)
, 221-247.
![]() ![]() |
|
L. Gasiński
, Existence result for hyperbolic hemivariational inequalities, Nonlinear Anal., 47 (2001)
, 681-686.
doi: 10.1016/S0362-546X(01)00211-5.![]() ![]() ![]() |
|
L. Gasiński
, Existence of solutions for hyperbolic hemivariational inequalities, J. Math. Anal. Appl., 276 (2002)
, 723-746.
doi: 10.1016/S0022-247X(02)00431-6.![]() ![]() ![]() |
|
L. Gasiński
, Evolution hemivariational inequalities with hysteresis, Nonlinear Anal., 57 (2004)
, 323-340.
doi: 10.1016/j.na.2004.02.016.![]() ![]() ![]() |
|
L. Gasiński
, Evolution hemivariational inequality with hysteresis operator in higher order term, Acta Math. Sin. (Engl. Ser.), 24 (2008)
, 107-120.
doi: 10.1007/s10114-007-0997-6.![]() ![]() ![]() |
|
L. Gasiński and N. S. Papageorgiou,
Nonlinear Analysis Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006.
![]() ![]() |
|
L. Gasiński and N. S. Papageorgiou,
Exercises in Analysis. Part 1 Problem Books in Mathematics. Springer, Cham, 2014.
![]() ![]() |
|
L. Gasiński
and M. Smolka
, An existence theorem for wave-type hyperbolic hemivariational inequalities, Math. Nachr., 242 (2002)
, 79-90.
doi: 10.1002/1522-2616(200207)242:1<79::AID-MANA79>3.0.CO;2-S.![]() ![]() ![]() |
|
L. Gasiński
and M. Smolka
, Existence of solutions for wave-type hemivariational inequalities with noncoercive viscosity damping, J. Math. Anal. Appl., 270 (2002)
, 150-164.
doi: 10.1016/S0022-247X(02)00057-4.![]() ![]() ![]() |
|
N. Hirano
, Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. Amer. Math. Soc., 120 (1994)
, 185-192.
doi: 10.1090/S0002-9939-1994-1174494-8.![]() ![]() ![]() |
|
S. Hu
and N. S. Papageorgiou
, On the existence of periodic solutions for a class of nonlinear evolution inclusions, Boll. Un. Mat. Ital. B (7), 7 (1993)
, 591-605.
![]() ![]() |
|
S. Hu and N. S. Papageorgiou,
Handbook of Multivalued Analysis. Vol. I. Theory Kluwer Academic Publishers, Dordrecht, 1997.
doi: 10.1007/978-1-4615-6359-4.![]() ![]() ![]() |
|
S. Hu and N. S. Papageorgiou,
Handbook of Multivalued Analysis. Vol. Ⅱ. Applications Kluwer Academic Publishers, Dordrecht, 2000.
doi: 10.1007/978-1-4615-4665-8_17.![]() ![]() ![]() |
|
P. O. Kasyanov
, V. S. Mel'nik
and S. Toscano
, Solutions of Cauchy and periodic problems for evolution inclusions with multi-valued $w_{λ_0}$ -pseudomonotone maps, J. Differential Equations, 249 (2010)
, 1258-1287.
doi: 10.1016/j.jde.2010.05.008.![]() ![]() ![]() |
|
V. Lakshmikantham
and N. S. Papageorgiou
, Periodic solutions of nonlinear evolution inclusions, J. Comput. Appl. Math., 52 (1994)
, 277-286.
doi: 10.1016/0377-0427(94)90361-1.![]() ![]() ![]() |
|
J. Leray
and J.-L. Lions
, Quelques résulatats de Višik sur les problémes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965)
, 97-107.
![]() ![]() |
|
J. -L. Lions,
Quelques Méthodes de Résolution Des Problémes Aux Limites Non Linéaires Dunod; Gauthier-Villars, Paris, 1969.
![]() ![]() |
|
A. Paicu
, Periodic solutions for a class of differential inclusions in general Banach spaces, J. Math. Anal. Appl., 337 (2008)
, 1238-1248.
doi: 10.1016/j.jmaa.2007.04.053.![]() ![]() ![]() |
|
P. D. Panagiotopoulos,
Hemivariational Inequalities. Applications to Mechanics and Engineering Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-51677-1.![]() ![]() ![]() |
|
N. S. Papageorgiou and S. Kyritsi,
Handbook of Applied Analysis Springer-Verlag, New York, 2009.
doi: 10.1007/b120946.![]() ![]() ![]() |
|
J. Prüss
, Periodic solutions of semilinear evolution equations, Nonlinear Anal., 3 (1979)
, 601-612.
doi: 10.1016/0362-546X(79)90089-0.![]() ![]() ![]() |
|
P. Sattayatham
, S. Tangmanee
and W. Wei
, On periodic solutions of nonlinear evolution equations in Banach spaces, J. Math. Anal. Appl., 276 (2002)
, 98-108.
doi: 10.1016/S0022-247X(02)00378-5.![]() ![]() ![]() |
|
N. Shioji
, Existence of periodic solutions for nonlinear evolution equations with pseudomonotone operators, Proc. Amer. Math. Soc., 125 (1997)
, 2921-2929.
doi: 10.1090/S0002-9939-97-03984-1.![]() ![]() ![]() |
|
I. I. Vrabie
, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc., 109 (1990)
, 653-661.
doi: 10.1090/S0002-9939-1990-1015686-4.![]() ![]() ![]() |
|
X. Xue
and Y. Cheng
, Existence of periodic solutions of nonlinear evolution inclusions in Banach spaces, Nonlinear Anal. Real World Appl., 11 (2010)
, 459-471.
doi: 10.1016/j.nonrwa.2008.11.020.![]() ![]() ![]() |
|
E. Zeidler, Nonlinear Functional Analysis and Its Applications Ⅱ/B. Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-0985-0.![]() ![]() ![]() |