We study periodic problems for nonlinear evolution inclusions defined in the framework of an evolution triple $(X,H,X^*)$ of spaces. The operator $A(t,x)$ representing the spatial differential operator is not in general monotone. The reaction (source) term $F(t,x)$ is defined on $[0,b]× X$ with values in $2^{X^*}\setminus\{\emptyset\}$. Using elliptic regularization, we approximate the problem, solve the approximation problem and pass to the limit. We also present some applications to periodic parabolic inclusions.
Citation: |
H. Amann , Periodic solutions of semilinear parabolic equations, Nonlinear Analysis (Collection of Papers in Honor of Erich H. Rothe), (1978) , 1-29. | |
R. Bader and N. S. Papageorgiou , On the problem of periodic evolution inclusions of the subdifferential type, Z. Anal. Anwendungen, 21 (2002) , 963-984. doi: 10.4171/ZAA/1120. | |
R. I. Becker , Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl., 82 (1981) , 33-48. doi: 10.1016/0022-247X(81)90223-7. | |
F. E. Browder , Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A., 53 (1965) , 1100-1103. doi: 10.1073/pnas.53.5.1100. | |
R. Caşcaval and I. I. Vrabie , Existence of periodic solutions for a class of nonlinear evolution equations, Rev. Mat. Univ. Complut. Madrid, 7 (1994) , 325-338. | |
K. C. Chang , Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981) , 102-129. doi: 10.1016/0022-247X(81)90095-0. | |
F. H. Clarke, Optimization and Nonsmooth Analysis Second edition. Classics in Applied Mathematics, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. | |
A. Defranceschi , Asymptotic analysis of boundary value problems for quasi-linear monotone operators, Asymptotic Anal., 3 (1990) , 221-247. | |
L. Gasiński , Existence result for hyperbolic hemivariational inequalities, Nonlinear Anal., 47 (2001) , 681-686. doi: 10.1016/S0362-546X(01)00211-5. | |
L. Gasiński , Existence of solutions for hyperbolic hemivariational inequalities, J. Math. Anal. Appl., 276 (2002) , 723-746. doi: 10.1016/S0022-247X(02)00431-6. | |
L. Gasiński , Evolution hemivariational inequalities with hysteresis, Nonlinear Anal., 57 (2004) , 323-340. doi: 10.1016/j.na.2004.02.016. | |
L. Gasiński , Evolution hemivariational inequality with hysteresis operator in higher order term, Acta Math. Sin. (Engl. Ser.), 24 (2008) , 107-120. doi: 10.1007/s10114-007-0997-6. | |
L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006. | |
L. Gasiński and N. S. Papageorgiou, Exercises in Analysis. Part 1 Problem Books in Mathematics. Springer, Cham, 2014. | |
L. Gasiński and M. Smolka , An existence theorem for wave-type hyperbolic hemivariational inequalities, Math. Nachr., 242 (2002) , 79-90. doi: 10.1002/1522-2616(200207)242:1<79::AID-MANA79>3.0.CO;2-S. | |
L. Gasiński and M. Smolka , Existence of solutions for wave-type hemivariational inequalities with noncoercive viscosity damping, J. Math. Anal. Appl., 270 (2002) , 150-164. doi: 10.1016/S0022-247X(02)00057-4. | |
N. Hirano , Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. Amer. Math. Soc., 120 (1994) , 185-192. doi: 10.1090/S0002-9939-1994-1174494-8. | |
S. Hu and N. S. Papageorgiou , On the existence of periodic solutions for a class of nonlinear evolution inclusions, Boll. Un. Mat. Ital. B (7), 7 (1993) , 591-605. | |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory Kluwer Academic Publishers, Dordrecht, 1997. doi: 10.1007/978-1-4615-6359-4. | |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. Ⅱ. Applications Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-1-4615-4665-8_17. | |
P. O. Kasyanov , V. S. Mel'nik and S. Toscano , Solutions of Cauchy and periodic problems for evolution inclusions with multi-valued $w_{λ_0}$ -pseudomonotone maps, J. Differential Equations, 249 (2010) , 1258-1287. doi: 10.1016/j.jde.2010.05.008. | |
V. Lakshmikantham and N. S. Papageorgiou , Periodic solutions of nonlinear evolution inclusions, J. Comput. Appl. Math., 52 (1994) , 277-286. doi: 10.1016/0377-0427(94)90361-1. | |
J. Leray and J.-L. Lions , Quelques résulatats de Višik sur les problémes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965) , 97-107. | |
J. -L. Lions, Quelques Méthodes de Résolution Des Problémes Aux Limites Non Linéaires Dunod; Gauthier-Villars, Paris, 1969. | |
A. Paicu , Periodic solutions for a class of differential inclusions in general Banach spaces, J. Math. Anal. Appl., 337 (2008) , 1238-1248. doi: 10.1016/j.jmaa.2007.04.053. | |
P. D. Panagiotopoulos, Hemivariational Inequalities. Applications to Mechanics and Engineering Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-51677-1. | |
N. S. Papageorgiou and S. Kyritsi, Handbook of Applied Analysis Springer-Verlag, New York, 2009. doi: 10.1007/b120946. | |
J. Prüss , Periodic solutions of semilinear evolution equations, Nonlinear Anal., 3 (1979) , 601-612. doi: 10.1016/0362-546X(79)90089-0. | |
P. Sattayatham , S. Tangmanee and W. Wei , On periodic solutions of nonlinear evolution equations in Banach spaces, J. Math. Anal. Appl., 276 (2002) , 98-108. doi: 10.1016/S0022-247X(02)00378-5. | |
N. Shioji , Existence of periodic solutions for nonlinear evolution equations with pseudomonotone operators, Proc. Amer. Math. Soc., 125 (1997) , 2921-2929. doi: 10.1090/S0002-9939-97-03984-1. | |
I. I. Vrabie , Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc., 109 (1990) , 653-661. doi: 10.1090/S0002-9939-1990-1015686-4. | |
X. Xue and Y. Cheng , Existence of periodic solutions of nonlinear evolution inclusions in Banach spaces, Nonlinear Anal. Real World Appl., 11 (2010) , 459-471. doi: 10.1016/j.nonrwa.2008.11.020. | |
E. Zeidler, Nonlinear Functional Analysis and Its Applications Ⅱ/B. Nonlinear Monotone Operators, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0. |