This paper is concerned with the optimal control problem of the vibrations of a viscoelastic beam, which is governed by a nonlinear partial differential equation. We discuss the initial-boundary problem for the cases when the ends of the beam are clamped or hinged. We define the weak solution of this initial-boundary problem. Our control problem is formulated by minimization of a functional where the state of a system is the solution of viscoelastic beam equation. We use the Galerkin method to approximate the solution of our control problem with respect to a spatial variable. Based on the finite dimensional approximation we prove that as the discretization parameters tend to zero then the weak accumulation points of the optimal solutions of the discrete family control problems exist and each of these points is the solution of the original optimal control problem.
Citation: |
A. S. Ackleh , H. T. Banks and G. A. Pinter , A Nonlinear Beam Equation, Appl. Math. Letters, 15 (2002) , 381-387. doi: 10.1016/S0893-9659(01)00147-1. | |
J. Ahn and D. E. Stewart , A viscoelastic Timoshenko beam with dynamic frictionless impact, Discr. Cont. Dynam. Sys. B, 12 (2009) , 1-22. doi: 10.3934/dcdsb.2009.12.1. | |
K. T. Andrews , Y. Dumont , M. F. M'Bengue , J. Purcell and M. Shillor , Analysis and simulations of~nonlinear elastic dynamic beam, ZAMP, 63 (2012) , 1005-1019. doi: 10.1007/s00033-012-0233-9. | |
N. Arada , E. Casas and F. Tröltzsch , Error estimates for the numerical approximation of a semilinear elliptic control problem, Comp. Optim. Applic., 23 (2002) , 201-229. doi: 10.1023/A:1020576801966. | |
J. M. Ball , Stability theory for an extensible beam, J. Differ. Equat., 14 (1973) , 399-418. doi: 10.1016/0022-0396(73)90056-9. | |
J. M. Ball , Initial-boundary value problems for an extensible beam, J.Math.Anal. Appl., 42 (1973) , 61-90. doi: 10.1016/0022-247X(73)90121-2. | |
M. Barboteu , M. Sofonea and D. Tiba , The control variational method for beams in contact with deformable obstacles, ZAMM, 92 (2012) , 25-40. doi: 10.1002/zamm.201000161. | |
A. Dębinska-Nagórska , A. Just and Z. Stempień , Approximation of an optimal control problem governed by a differential parabolic inclusion, Optim., 59 (2010) , 707-715. doi: 10.1080/02331930802434807. | |
A. Dębinska-Nagórska , A. Just and Z. Stempień , Galerkin method for optimal control of~second-order evolution equations, Math. Meth. Appl. Sci., 27 (2004) , 221-230. doi: 10.1002/mma.452. | |
Z. Denkowski, S. Migórski and N. Papageorgiou, Nonlinear Analysis. Applications Kluwer Academic Publishers, Boston/Dordrecht/London, 2002. | |
E. Feireisl and L. Herrman , Oscillations of a nonlinearly dumped extensible beam, Appl. Math., 37 (1992) , 469-478. | |
M. Galewski , On the optimal control problem governed by the nonlinear elastic beam equation, Appl. Math. Comput., 203 (2008) , 916-920. doi: 10.1016/j.amc.2008.04.022. | |
I. Hlaváček and J. Lovišek , Optimal control of semi-coercive variational inequalities with application to optimal design of beams and plates, ZAMM, 78 (1998) , 405-417. doi: 10.1002/(SICI)1521-4001(199806)78:6<405::AID-ZAMM405>3.0.CO;2-Z. | |
J. Hwang , Optimal control problems for an extensible beam equation, J. Math. Anal. Appl., 353 (2009) , 436-448. doi: 10.1016/j.jmaa.2008.12.020. | |
A. Just and Z. Stempień , Pareto optimal control problem and its Galerkin approximation for a nonlinear one-dimensional extensible beam equation, Opuscula Math., 36 (2016) , 239-252. doi: 10.7494/OpMath.2016.36.2.239. | |
I. Lasiecka , Galerkin approximation of infinite-dimensional compensators for flexible structure with unbounded control action, Acta Appl. Math., 28 (1992) , 101-133. doi: 10.1007/BF00047552. | |
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations Springer-Verlag, Berlin/Heidelberg/New York, 1971, (Russian Edition, Mir, Moscow 1972). | |
M. L. Oliveira and O. A. Lima , Exponential decay of the solutions of the beam system, Nonlinear Anal., 42 (2000) , 1271-1291. doi: 10.1016/S0362-546X(99)00155-8. | |
D. C. Pereira , Existence, uniqueness and asymptotic behaviour for solutions of the nonlinear beam equation, Nonlinear Anal., 14 (1990) , 613-623. doi: 10.1016/0362-546X(90)90041-E. | |
I. Sadek , M. Abukhaled and T. Abdulrub , Coupled Galerkin and parametrization methods for optimal control of discretely connected parallel beams, Appl. Math. Modelling, 34 (2010) , 3949-3957. doi: 10.1016/j.apm.2010.03.031. | |
F. Tröltzsch , Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems -strong convergence of optimal controls, Appl. Math. Optimz., 29 (1994) , 309-329. doi: 10.1007/BF01189480. | |
E. Zeidler, Nonlinear Functional Analysis and its Applications Ⅱ Springer-Verlag, Berlin, 1990. doi: 10.1007/978-1-4612-0985-0. |