The 2-dimensional system of neutral type nonlinear difference equations with delays in the following form
$\left\{ \begin{align}&Δ≤(x_1(n)-p_1(n)\,x_1(n-τ_1))=a_1(n)\,f_1(x_1(n-σ_1),x_2(n-σ_2))\\&Δ≤(x_2(n)-p_2(n)\,x_2(n-τ_2))=a_2(n)\,f_2(x_1(n-σ_3),x_2(n-σ_4)),\end{align} \right.$
is considered. In this paper we use Schauder's fixed point theorem to study the existence of periodic solutions of the above system.
Citation: |
A. Bellen
, N. Guglielmi
and A. E. Ruehli
, Methods for linear systems of circuit delay differential equations of neutral type, IEEE Transactions on Circuits and Systems I, 46 (1999)
, 212-216.
doi: 10.1109/81.739268.![]() ![]() ![]() |
|
R. K. Brayton
and R. A. Willoughby
, On the numerical integration of a symmetric system of difference-differential equations of neutral type, J. Math. Anal. Appl., 18 (1967)
, 182-189.
doi: 10.1016/0022-247X(67)90191-6.![]() ![]() ![]() |
|
A. Burton, Stability by Fixed Point Theory for Functional Differential Equations 1st edition, Dover Publications, New York, 2006.
![]() ![]() |
|
G. E. Chatzarakis and G. N. Miliaras, Convergence and divergence of the solutions of a neutral difference equation J. Appl. Math. 2011 (2011), Art. ID 262316, 18 pp.
doi: 10.1155/2011/262316.![]() ![]() ![]() |
|
M. Galewski
, R. Jankowski
, M. Nockowska-Rosiak
and E. Schmeidel
, On the existence of bounded solutions for nonlinear second-order neutral difference equations, Electron. J. Qual. Theory Differ. Equ., 2014 (2014)
, 1-12.
![]() ![]() |
|
K. Gopalsamy,
Stability and Oscillations in Delay Differential Equations of Population Dynamics 1st edition, Kluwer Academic Publishers, Dordrecht, 1992.
doi: 10.1007/978-94-015-7920-9.![]() ![]() ![]() |
|
Z. Guo
and M. Liu
, Existence of non-oscillatory solutions for a higher-order nonlinear neutral difference equation, Electron. J. Differential Equations, 146 (2010)
, 1-7.
doi: 10.1016/S0022-247X(03)00017-9.![]() ![]() ![]() |
|
R. Jankowski
and E. Schmeidel
, Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences, Discrete Contin. Dyn. Syst. (B), 19 (2014)
, 2691-2696.
doi: 10.3934/dcdsb.2014.19.2691.![]() ![]() ![]() |
|
Z. Liu
, Y. Xu
and S. M. Kang
, Global solvability for a second order nonlinear neutral delay difference equation, Comput. Math. Appl., 57 (2009)
, 587-595.
![]() |
|
J. Migda
, Asymptotically polynomial solutions to difference equations of neutral type, Appl. Math. Comput., 279 (2016)
, 16-27.
doi: 10.1016/j.amc.2016.01.001.![]() ![]() ![]() |
|
M. Migda
and J. Migda
, A class of first-order nonlinear difference equations of neutral type, Math. Comput. Modelling, 40 (2004)
, 297-306.
doi: 10.1016/j.mcm.2003.12.006.![]() ![]() ![]() |
|
M. Migda
, E. Schmeidel
and M. Zdanowicz
, Bounded solutions of k-dimensional system of nonlinear difference equations of neutral type, Electron. J. Qual. Theory Differ. Equ., 80 (2015)
, 1-17.
doi: 10.14232/ejqtde.2015.1.80.![]() ![]() ![]() |
|
M. Migda
and G. Zhang
, Monotone solutions of neutral difference equations of odd order, J. Difference Equ. Appl., 10 (2004)
, 691-703.
doi: 10.1080/10236190410001702490.![]() ![]() ![]() |
|
Y. N. Raffoul
and E. Yankson
, Positive periodic solutions in neutral delay difference equations, Adv. Dyn. Syst. Appl., 5 (2010)
, 123-130.
![]() ![]() |
|
X. H. Tang
and S. S. Cheng
, Positive solutions of a neutral difference equation with positive and negative coefficients, Georgian Math. J., 11 (2004)
, 177-185.
doi: 10.1515/GMJ.2004.177.![]() ![]() ![]() |
|
E. Thandapani
, R. Karunakaran
and I. M. Arockiasamy
, Bounded nonoscillatory solutions of neutral type difference systems, Electron. J. Qual. Theory Differ Equ. Spec. Ed. I, 25 (2009)
, 1-8.
![]() ![]() |
|
W. Wang
and X. Yang
, Positive periodic solutions for neutral functional difference equations, Int. J. Difference Equ., 7 (2012)
, 99-109.
![]() ![]() |
|
Z. Wang
and J. Sun
, Asymptotic behavior of solutions of nonlinear higher-order neutral type difference equations, J. Differ. Equ. Appl., 12 (2006)
, 419-432.
doi: 10.1080/10236190500539352.![]() ![]() ![]() |
|
J. Wu
, Two periodic solutions of $n$-dimensional neutral functional difference systems, J. Math. Anal. Appl., 334 (2007)
, 738-752.
doi: 10.1016/j.jmaa.2007.01.009.![]() ![]() ![]() |