
-
Previous Article
Numerical treatment of contact problems with thermal effect
- DCDS-B Home
- This Issue
-
Next Article
Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with $p$-Laplacian
Stability of stochastic semigroups and applications to Stein's neuronal model
1. | Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland |
2. | Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland |
A new theorem on asymptotic stability of stochastic semigroups is given. This theorem is applied to a stochastic semigroup corresponding to Stein's neuronal model. Asymptotic properties of models with and without the refractory period are compared.
References:
[1] |
A. Bobrowski, Functional Analysis for Probability and Stochastic Processes. An Introduction, Cambridge University Press, Cambridge, 2015.
doi: 10.1017/CBO9780511614583.![]() ![]() ![]() |
[2] |
A. Bobrowski, Convergence of One-Parameter Operator Semigroups: In Models of Mathematical Biology and Elsewhere New Mathematical Monographs, 30 Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316480663. |
[3] |
A. N. Burkitt,
A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biol. Cybern., 95 (2006), 1-19.
doi: 10.1007/s00422-006-0068-6. |
[4] |
V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Theory, Models and Applications to Finance, Biology and Medicine Birkhäuser, Boston, 2005. |
[5] |
M. H. A. Davis,
Piecewise-deterministic Markov processes: A general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B, 46 (1984), 353-388.
|
[6] |
G. Grimmett and D. Stirzaker, Probability and Random Processes, Oxford University Press, Oxford, 2001.
![]() ![]() |
[7] |
P. Hrubý,
Analysis of bursting in Stein's model with realistic synapses, Gen. Physiol. Biophys., 14 (1995), 305-311.
|
[8] |
A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics II edition, Springer Applied Mathematical Sciences, 97, New York, 1994.
doi: 10.1007/978-1-4612-4286-4. |
[9] |
J. R. Norris, Markov Chains Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 1998. |
[10] |
K. Pichór and R. Rudnicki,
Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685.
|
[11] |
______, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl. , 436 (2016), 305-321.
doi: 10.1016/j.jmaa.2015.12.009. |
[12] |
_____, Asymptotic decomposition of substochastic semigroups and applications Stochastics and Dynamics 18 (2018) in press.
doi: 10.1142/S0219493718500016. |
[13] |
K. Rajdl and P. Lansky,
Stein's neuronal model with pooled renewal input, Biol. Cybern., 109 (2015), 389-399.
doi: 10.1007/s00422-015-0650-x. |
[14] |
R. Rudnicki, Stochastic operators and semigroups and their applications in physics and biology, in J. Banasiak, M. Mokhtar-Kharroubi (eds. ), Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Mathematics Springer, Heidelberg, 2126 (2015), 255-318. |
[15] |
R. Rudnicki and M. Tyran-Kamińska, Piecewise deterministic Markov processes in biological models, in: Semigroups of Operators – Theory and Applications, J. Banasiak et al. (eds. ), Springer Proceedings in Mathematics & Statistics 113, Springer, Heidelberg, 2015,235–255.
doi: 10.1007/978-3-319-12145-1_15. |
[16] |
R. B. Stein,
Some models of neuronal variability, Biophys. J., 7 (1967), 37-68.
doi: 10.1016/S0006-3495(67)86574-3. |
[17] |
R. B. Stein, E. R. Gossen and K. E. Jones,
Neuronal variability: Noise or part of the signal?, Nat. Rev. Neurosci., 6 (2005), 389-397.
doi: 10.1038/nrn1668. |
[18] |
H. Tuckwell, Introduction to Theoretical Neurobiology, Cambridge University Press, Cambridge, 1988.
![]() ![]() |
[19] |
W. J. Wilbur and J. Rinzel,
An analysis of Stein's model for stochastic neuronal excitation, Biol. Cybern., 45 (1982), 107-114.
doi: 10.1007/BF00335237. |
show all references
References:
[1] |
A. Bobrowski, Functional Analysis for Probability and Stochastic Processes. An Introduction, Cambridge University Press, Cambridge, 2015.
doi: 10.1017/CBO9780511614583.![]() ![]() ![]() |
[2] |
A. Bobrowski, Convergence of One-Parameter Operator Semigroups: In Models of Mathematical Biology and Elsewhere New Mathematical Monographs, 30 Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316480663. |
[3] |
A. N. Burkitt,
A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biol. Cybern., 95 (2006), 1-19.
doi: 10.1007/s00422-006-0068-6. |
[4] |
V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Theory, Models and Applications to Finance, Biology and Medicine Birkhäuser, Boston, 2005. |
[5] |
M. H. A. Davis,
Piecewise-deterministic Markov processes: A general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B, 46 (1984), 353-388.
|
[6] |
G. Grimmett and D. Stirzaker, Probability and Random Processes, Oxford University Press, Oxford, 2001.
![]() ![]() |
[7] |
P. Hrubý,
Analysis of bursting in Stein's model with realistic synapses, Gen. Physiol. Biophys., 14 (1995), 305-311.
|
[8] |
A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics II edition, Springer Applied Mathematical Sciences, 97, New York, 1994.
doi: 10.1007/978-1-4612-4286-4. |
[9] |
J. R. Norris, Markov Chains Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 1998. |
[10] |
K. Pichór and R. Rudnicki,
Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685.
|
[11] |
______, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl. , 436 (2016), 305-321.
doi: 10.1016/j.jmaa.2015.12.009. |
[12] |
_____, Asymptotic decomposition of substochastic semigroups and applications Stochastics and Dynamics 18 (2018) in press.
doi: 10.1142/S0219493718500016. |
[13] |
K. Rajdl and P. Lansky,
Stein's neuronal model with pooled renewal input, Biol. Cybern., 109 (2015), 389-399.
doi: 10.1007/s00422-015-0650-x. |
[14] |
R. Rudnicki, Stochastic operators and semigroups and their applications in physics and biology, in J. Banasiak, M. Mokhtar-Kharroubi (eds. ), Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Mathematics Springer, Heidelberg, 2126 (2015), 255-318. |
[15] |
R. Rudnicki and M. Tyran-Kamińska, Piecewise deterministic Markov processes in biological models, in: Semigroups of Operators – Theory and Applications, J. Banasiak et al. (eds. ), Springer Proceedings in Mathematics & Statistics 113, Springer, Heidelberg, 2015,235–255.
doi: 10.1007/978-3-319-12145-1_15. |
[16] |
R. B. Stein,
Some models of neuronal variability, Biophys. J., 7 (1967), 37-68.
doi: 10.1016/S0006-3495(67)86574-3. |
[17] |
R. B. Stein, E. R. Gossen and K. E. Jones,
Neuronal variability: Noise or part of the signal?, Nat. Rev. Neurosci., 6 (2005), 389-397.
doi: 10.1038/nrn1668. |
[18] |
H. Tuckwell, Introduction to Theoretical Neurobiology, Cambridge University Press, Cambridge, 1988.
![]() ![]() |
[19] |
W. J. Wilbur and J. Rinzel,
An analysis of Stein's model for stochastic neuronal excitation, Biol. Cybern., 45 (1982), 107-114.
doi: 10.1007/BF00335237. |

[1] |
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005 |
[2] |
Yongsheng Song. Stein’s method for the law of large numbers under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 199-212. doi: 10.3934/puqr.2021010 |
[3] |
Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213 |
[4] |
Philippe Michel, Suman Kumar Tumuluri. A note on a neuron network model with diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3659-3676. doi: 10.3934/dcdsb.2020085 |
[5] |
Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381 |
[6] |
Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109 |
[7] |
Tomás Caraballo, Carlos Ogouyandjou, Fulbert Kuessi Allognissode, Mamadou Abdoul Diop. Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 507-528. doi: 10.3934/dcdsb.2019251 |
[8] |
Feng Zhang, Alice Lubbe, Qishao Lu, Jianzhong Su. On bursting solutions near chaotic regimes in a neuron model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1363-1383. doi: 10.3934/dcdss.2014.7.1363 |
[9] |
Maria Francesca Carfora, Enrica Pirozzi. Stochastic modeling of the firing activity of coupled neurons periodically driven. Conference Publications, 2015, 2015 (special) : 195-203. doi: 10.3934/proc.2015.0195 |
[10] |
Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure and Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637 |
[11] |
Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a size-structured cannibalism population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1975-1998. doi: 10.3934/dcdsb.2016032 |
[12] |
S. Hadd, F.Z. Lahbiri. A semigroup approach to stochastic systems with input delay at the boundary. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022004 |
[13] |
Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305 |
[14] |
Boris Anicet Guimfack, Conrad Bertrand Tabi, Alidou Mohamadou, Timoléon Crépin Kofané. Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2229-2243. doi: 10.3934/dcdss.2020397 |
[15] |
Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005 |
[16] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6131-6154. doi: 10.3934/dcdsb.2021010 |
[17] |
Miljana Jovanović, Vuk Vujović. Stability of stochastic heroin model with two distributed delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2407-2432. doi: 10.3934/dcdsb.2020016 |
[18] |
Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1541-1556. doi: 10.3934/jimo.2021032 |
[19] |
Marie Levakova. Effect of spontaneous activity on stimulus detection in a simple neuronal model. Mathematical Biosciences & Engineering, 2016, 13 (3) : 551-568. doi: 10.3934/mbe.2016007 |
[20] |
S. M. Crook, M. Dur-e-Ahmad, S. M. Baer. A model of activity-dependent changes in dendritic spine density and spine structure. Mathematical Biosciences & Engineering, 2007, 4 (4) : 617-631. doi: 10.3934/mbe.2007.4.617 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]