A new theorem on asymptotic stability of stochastic semigroups is given. This theorem is applied to a stochastic semigroup corresponding to Stein's neuronal model. Asymptotic properties of models with and without the refractory period are compared.
Citation: |
A. Bobrowski, Functional Analysis for Probability and Stochastic Processes. An Introduction, Cambridge University Press, Cambridge, 2015.
doi: 10.1017/CBO9780511614583.![]() ![]() ![]() |
|
A. Bobrowski, Convergence of One-Parameter Operator Semigroups: In Models of Mathematical Biology and Elsewhere New Mathematical Monographs, 30 Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316480663.![]() ![]() ![]() |
|
A. N. Burkitt
, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biol. Cybern., 95 (2006)
, 1-19.
doi: 10.1007/s00422-006-0068-6.![]() ![]() ![]() |
|
V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Theory, Models and Applications to Finance, Biology and Medicine Birkhäuser, Boston, 2005.
![]() ![]() |
|
M. H. A. Davis
, Piecewise-deterministic Markov processes: A general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B, 46 (1984)
, 353-388.
![]() ![]() |
|
G. Grimmett and D. Stirzaker, Probability and Random Processes, Oxford University Press, Oxford, 2001.
![]() ![]() |
|
P. Hrubý
, Analysis of bursting in Stein's model with realistic synapses, Gen. Physiol. Biophys., 14 (1995)
, 305-311.
![]() |
|
A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics II edition, Springer Applied Mathematical Sciences, 97, New York, 1994.
doi: 10.1007/978-1-4612-4286-4.![]() ![]() ![]() |
|
J. R. Norris, Markov Chains Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 1998.
![]() ![]() |
|
K. Pichór
and R. Rudnicki
, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000)
, 668-685.
![]() |
|
______, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl. , 436 (2016), 305-321.
doi: 10.1016/j.jmaa.2015.12.009.![]() ![]() ![]() |
|
_____, Asymptotic decomposition of substochastic semigroups and applications Stochastics and Dynamics 18 (2018) in press.
doi: 10.1142/S0219493718500016.![]() ![]() |
|
K. Rajdl
and P. Lansky
, Stein's neuronal model with pooled renewal input, Biol. Cybern., 109 (2015)
, 389-399.
doi: 10.1007/s00422-015-0650-x.![]() ![]() ![]() |
|
R. Rudnicki, Stochastic operators and semigroups and their applications in physics and biology, in J. Banasiak, M. Mokhtar-Kharroubi (eds. ), Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Mathematics Springer, Heidelberg, 2126 (2015), 255-318.
![]() ![]() |
|
R. Rudnicki and M. Tyran-Kamińska, Piecewise deterministic Markov processes in biological models, in: Semigroups of Operators – Theory and Applications, J. Banasiak et al. (eds. ), Springer Proceedings in Mathematics & Statistics 113, Springer, Heidelberg, 2015,235–255.
doi: 10.1007/978-3-319-12145-1_15.![]() ![]() ![]() |
|
R. B. Stein
, Some models of neuronal variability, Biophys. J., 7 (1967)
, 37-68.
doi: 10.1016/S0006-3495(67)86574-3.![]() ![]() |
|
R. B. Stein
, E. R. Gossen
and K. E. Jones
, Neuronal variability: Noise or part of the signal?, Nat. Rev. Neurosci., 6 (2005)
, 389-397.
doi: 10.1038/nrn1668.![]() ![]() |
|
H. Tuckwell, Introduction to Theoretical Neurobiology, Cambridge University Press, Cambridge, 1988.
![]() ![]() |
|
W. J. Wilbur
and J. Rinzel
, An analysis of Stein's model for stochastic neuronal excitation, Biol. Cybern., 45 (1982)
, 107-114.
doi: 10.1007/BF00335237.![]() ![]() ![]() |
A schematic diagram of the model