
Previous Article
Numerical treatment of contact problems with thermal effect
 DCDSB Home
 This Issue

Next Article
Treatment of glioma with virotherapy and TNFα inhibitors: Analysis as a dynamical system
The role of optimism and pessimism in the dynamics of emotional states
1.  College of InterFaculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw, Poland 
2.  Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02097 Warsaw, Poland 
In this paper we make an attempt to study the influence of optimism and pessimism into our social life. We base on the model considered earlier by Rinaldi and Gragnani (1998) and Rinaldi et al. (2010) in the context of romantic relationships. Liebovitch et al. (2008) used the same model to describe competition between communicating people or groups of people. Considered system of nonlinear differential equations assumes that the emotional state of an actor at any time is affected by the state of each actor alone, rate of return to that state, second actor's emotional state and mutual sympathy. Using this model we describe the change of emotions of both actors as a result of a single meeting. We try to explain who wants to meet whom and why. Interpreting the results, we focus on the analysis of the impact of a person's attitude to life (optimism or pessimism) on establishing emotional relations. It occurs that our conclusions are not always obvious from the psychological point of view. Moreover, using this model, we are able to explain such strange behavior as socalled Stockholm syndrom.
References:
[1] 
N. Bielczyk, M. Bodnar and U. Foryś, Delay can stabilize: Love affairs dynamics, Applied Mathematics and Computation, 219 (2012), 39233937. doi: 10.1016/j.amc.2012.10.028. Google Scholar 
[2] 
N. Bielczyk, U. Foryś and T. Płatkowski, Dynamical models of dyadic interactions with delay, J. Math. Soc., 37 (2013), 223249. doi: 10.1080/0022250X.2011.597279. Google Scholar 
[3] 
D. H. Felmlee and D. F. Greenberg, A dynamic systems model of dyadic interaction, Journal of Mathematical Sociology, 23 (1999), 155180. doi: 10.1080/0022250X.1999.9990218. Google Scholar 
[4]  J. M. Gottman, J. D. Murray, C. C. Swanson, R. Tyson and K. R. Swanson, The Mathematics of Marriage: Dynamic Nonlinear Models, MIT Press, Cambridge, 2002. Google Scholar 
[5] 
D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263291. doi: 10.21236/ADA045771. Google Scholar 
[6] 
L. Liebovitch, V. Naudot, R. Vallacher, A. Nowak, L. BiuWrzosinska and P. Coleman, Dynamics of twoactor cooperationcompetition conflict models, Physica A, 387 (2008), 63606378. Google Scholar 
[7]  J. D. Murray, Mathematical Biology. Ⅰ: An Introduction, SpringerVerlag, New York, 2002. Google Scholar 
[8] 
S. Rinaldi, Love dynamics: The case of linear couples, Applied Mathematics and Computation, 95 (1998), 181192. doi: 10.1016/S00963003(97)100819. Google Scholar 
[9] 
S. Rinaldi, F. Della Rosa and F. Dercole, Love and appeal in standard couples, International Journal of Bifurcation and Chaos, 20 (2010), 34733485. doi: 10.1142/S0218127410027829. Google Scholar 
[10] 
S. Rinaldi and A. Gragnani, Love dynamics between secure individuals: A modeling approach, Nonlinear Dynamics, Psychology, and Life Sciences, 2 (1998), 283301. Google Scholar 
[11] 
S. Rinaldi, P. Landi and F. Della Rosa, Small discoveries can have great consequences in love affairs: The case of beauty and the beast International Journal of Bifurcation and Chaos 23 (2013), 1330038, 8pp. doi: 10.1142/S0218127413300383. Google Scholar 
[12] 
S. Rinaldi, P. Landi and F. Della Rossa, Temporary bluffing can be rewarding in social systems: The case of romantic relationships, The Journal of Mathematical Sociology, 39 (2015), 203220. doi: 10.1080/0022250X.2015.1022280. Google Scholar 
[13] 
S. Rinaldi, F. D. Rossa and P. Landi, Landi, A mathematical model of pride and prejudice?, Nonlinear dynamics, psychology, and life sciences, 18 (2014), 199211. Google Scholar 
[14] 
S. Rinaldi, F. Rossa Della, F. Dercole, A. Gragnani and P. Landi, Modeling Love Dynamics vol. 89 of World Scientific Series on Nonlinear Science Series A, World Scientific Publishing Co. Pte. Ltd., 2016. Google Scholar 
[15] 
S. Strogatz, Love affairs and differential equations, Math. Magazine, 65 (1988), p35. Google Scholar 
[16]  S. Strogatz, Nonlinear Dynamics and Chaos, Westwiev Press, 1994. Google Scholar 
show all references
References:
[1] 
N. Bielczyk, M. Bodnar and U. Foryś, Delay can stabilize: Love affairs dynamics, Applied Mathematics and Computation, 219 (2012), 39233937. doi: 10.1016/j.amc.2012.10.028. Google Scholar 
[2] 
N. Bielczyk, U. Foryś and T. Płatkowski, Dynamical models of dyadic interactions with delay, J. Math. Soc., 37 (2013), 223249. doi: 10.1080/0022250X.2011.597279. Google Scholar 
[3] 
D. H. Felmlee and D. F. Greenberg, A dynamic systems model of dyadic interaction, Journal of Mathematical Sociology, 23 (1999), 155180. doi: 10.1080/0022250X.1999.9990218. Google Scholar 
[4]  J. M. Gottman, J. D. Murray, C. C. Swanson, R. Tyson and K. R. Swanson, The Mathematics of Marriage: Dynamic Nonlinear Models, MIT Press, Cambridge, 2002. Google Scholar 
[5] 
D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263291. doi: 10.21236/ADA045771. Google Scholar 
[6] 
L. Liebovitch, V. Naudot, R. Vallacher, A. Nowak, L. BiuWrzosinska and P. Coleman, Dynamics of twoactor cooperationcompetition conflict models, Physica A, 387 (2008), 63606378. Google Scholar 
[7]  J. D. Murray, Mathematical Biology. Ⅰ: An Introduction, SpringerVerlag, New York, 2002. Google Scholar 
[8] 
S. Rinaldi, Love dynamics: The case of linear couples, Applied Mathematics and Computation, 95 (1998), 181192. doi: 10.1016/S00963003(97)100819. Google Scholar 
[9] 
S. Rinaldi, F. Della Rosa and F. Dercole, Love and appeal in standard couples, International Journal of Bifurcation and Chaos, 20 (2010), 34733485. doi: 10.1142/S0218127410027829. Google Scholar 
[10] 
S. Rinaldi and A. Gragnani, Love dynamics between secure individuals: A modeling approach, Nonlinear Dynamics, Psychology, and Life Sciences, 2 (1998), 283301. Google Scholar 
[11] 
S. Rinaldi, P. Landi and F. Della Rosa, Small discoveries can have great consequences in love affairs: The case of beauty and the beast International Journal of Bifurcation and Chaos 23 (2013), 1330038, 8pp. doi: 10.1142/S0218127413300383. Google Scholar 
[12] 
S. Rinaldi, P. Landi and F. Della Rossa, Temporary bluffing can be rewarding in social systems: The case of romantic relationships, The Journal of Mathematical Sociology, 39 (2015), 203220. doi: 10.1080/0022250X.2015.1022280. Google Scholar 
[13] 
S. Rinaldi, F. D. Rossa and P. Landi, Landi, A mathematical model of pride and prejudice?, Nonlinear dynamics, psychology, and life sciences, 18 (2014), 199211. Google Scholar 
[14] 
S. Rinaldi, F. Rossa Della, F. Dercole, A. Gragnani and P. Landi, Modeling Love Dynamics vol. 89 of World Scientific Series on Nonlinear Science Series A, World Scientific Publishing Co. Pte. Ltd., 2016. Google Scholar 
[15] 
S. Strogatz, Love affairs and differential equations, Math. Magazine, 65 (1988), p35. Google Scholar 
[16]  S. Strogatz, Nonlinear Dynamics and Chaos, Westwiev Press, 1994. Google Scholar 
[1] 
LaSu Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic EulerPoisson equations. Discrete & Continuous Dynamical Systems  A, 2016, 36 (2) : 9811004. doi: 10.3934/dcds.2016.36.981 
[2] 
Janosch Rieger. The Euler scheme for state constrained ordinary differential inclusions. Discrete & Continuous Dynamical Systems  B, 2016, 21 (8) : 27292744. doi: 10.3934/dcdsb.2016070 
[3] 
Yuriy Golovaty, Anna MarciniakCzochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reactiondiffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229241. doi: 10.3934/cpaa.2012.11.229 
[4] 
Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems  B, 2009, 11 (1) : 87101. doi: 10.3934/dcdsb.2009.11.87 
[5] 
Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems  B, 2010, 14 (2) : 353365. doi: 10.3934/dcdsb.2010.14.353 
[6] 
Yacine Chitour, JeanMichel Coron, Mauro Garavello. On conditions that prevent steadystate controllability of certain linear partial differential equations. Discrete & Continuous Dynamical Systems  A, 2006, 14 (4) : 643672. doi: 10.3934/dcds.2006.14.643 
[7] 
Eugen Stumpf. Local stability analysis of differential equations with statedependent delay. Discrete & Continuous Dynamical Systems  A, 2016, 36 (6) : 34453461. doi: 10.3934/dcds.2016.36.3445 
[8] 
Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with statedependent delays. Conference Publications, 2001, 2001 (Special) : 416425. doi: 10.3934/proc.2001.2001.416 
[9] 
Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with statedependent delay. Discrete & Continuous Dynamical Systems  B, 2017, 22 (8) : 31673197. doi: 10.3934/dcdsb.2017169 
[10] 
Qian Xu. The stability of bifurcating steady states of several classes of chemotaxis systems. Discrete & Continuous Dynamical Systems  B, 2015, 20 (1) : 231248. doi: 10.3934/dcdsb.2015.20.231 
[11] 
Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933952. doi: 10.3934/mbe.2017049 
[12] 
Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 10711089. doi: 10.3934/mbe.2017056 
[13] 
Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems  B, 2011, 15 (3) : 849865. doi: 10.3934/dcdsb.2011.15.849 
[14] 
Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 37093722. doi: 10.3934/dcdsb.2016117 
[15] 
Kousuke Kuto, Tohru Tsujikawa. Bifurcation structure of steadystates for bistable equations with nonlocal constraint. Conference Publications, 2013, 2013 (special) : 467476. doi: 10.3934/proc.2013.2013.467 
[16] 
Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integrodifferential equation. Discrete & Continuous Dynamical Systems  B, 2011, 16 (1) : 5771. doi: 10.3934/dcdsb.2011.16.57 
[17] 
W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of secondorder ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209221. doi: 10.3934/jgm.2009.1.209 
[18] 
Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems  B, 2018, 23 (7) : 28792909. doi: 10.3934/dcdsb.2018165 
[19] 
Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear thirdorder ordinary differential equations. Discrete & Continuous Dynamical Systems  S, 2018, 11 (4) : 655666. doi: 10.3934/dcdss.2018040 
[20] 
Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517527. doi: 10.3934/mcrf.2015.5.517 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]